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PREFACE.

THE second volume of this Treatise deals with the more ad-
vanced portions of Hydrodynamics, including the motion of viscous
liquids to which the last four chapters have been devoted. It
commences with a chapter on Harmonic Analysis, in which a
variety of functions which frequently occur in physical investiga-
tions are considered. The most exhaustive work on this subject
is the German Treatise on Kugelfunctionen by Heine, of which
considerable use has been made, especially in the first twenty
pages of this chapter. The remainder of the chapter which relates
to Toroidal Functions, is taken from Mr Hicks' papers in the
Philosophical Transactions for 1881 and 1884.

The notation J, () for an ordinary Bessel's Function of degree
m i8 well established, and the second solution of Bessel’s equation,
which is not however so frequently required, may be conveniently
denoted by Y («); but there is another class of functions also of
considerable importance, which constitute the two solutions of
the equation which is obtained by changing # into «z in Bessel’s
equation. The notation for these functions does not appear to be
so well established, many English writers employing the symbols
Jn (i) and Y, («x), whilst German writers often employ the symbol
K, («x) in the place of Y, («x). But as it appears to me that the
employment of an imaginary argument in the case of functions
which may always be treated as real quantities, creates unnecessary
complexity, I have ventured to introduce a new notation, and
have denoted these functions by the symbols I, (z) and K, (=)
respectively.

a2



v PREFACE.

The portions of Chapter XIV. which relate to the vibrations of
a circular vortex and to linked vortices, have been taken with
slight modifications from a paper by Professor J. J. Thomson in
the Philosophical Transactions for 1882, and from the Treatise on
the Motion of Vortexz Rings by the same author, to which the
Adams’ Prize was adjudged in 1882. The latter portion of this
chapter has been derived from Mr Hicks’ papers on vortex rings in
the Philosophical Transactions for 1884 and 1885. It is however
necessary to point out, that the period equation obtained by
Mr Hicks for determining the fluted vibrations of a circular vortex,
does not agree with that obtained by myself, and consequently
there is an important difference in the results connected with the
stability of the vortex. I am however indebted to Mr A. E. H. Love,
for having examined and verified the analysis of §§ 326—340, and
I therefore trust that the results which are put forward are the
correct ones,

In the Chapter on Waves, I have made considerable use of
Prof. Greenhill’s Article on Waves in the American Journal of
Mathematics, Vol. IX., which contains an exhaustive discussion of
most of the principal problems of interest.

The Chapter on the Tides is confined exclusively to the
dynamical theories which have been proposed as an explanation of
tidal phenomena, and is principally derived from the investiga-
tions of the late Astronomer Royal and Professor G. H. Darwin.
The reduction of tidal observations, together with a variety of
questions relating to the practical portion of the subject, are very
fully treated in Professor Darwin’s Article on Tides in the
Encyclopaedia Britannica.

Although nearly forty years have elapsed since the publication
of Prof. Stokes’ paper “ On the Effects of the Internal Friction of
Fluids on Pendulums,” it is remarkable that very little progress
has been made with respect to the solution of problems connected
with the motion of solid bodies in a viscous liquid. The complete
solutions for a sphere and a right circular cylinder moving in a
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viscous liquid of unlimited extent under the action of given forces,
have not yet been obtained ; and no problem invelving the motion
of two solids appears to have ever been attempted; neither have
any general equations analogous to Lagrange’s equations been
discovered, by means of which the motion of one or more solids
in a viscous liquid may be obtained, without going through the
troublesome process of calculating the components of the force
and couple exerted by the liquid on each solid. The difficulties
of the subject are undoubtedly great, but it is hoped that before
the termination of the present century, substantial progress will be
made. ‘

" I have in conclusion to express my obligations to Professor
Greenhill for having read the proof sheets; to Mr A. E. H. Love
for having examined the analysis of §§ 326—340, and for having
read the proof sheets of the last four chapters; and to Professor
J. J. Thomson and Professor G. H. Darwin for permission to make
free use of their investigations on Vortex Rings and Laplace’s
Theory of the Tides respectively.

Unrrep UNrversity CLUB,
November 1888,
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CHAPTER XIL

ON SPHEROIDAL HARMONICS AND ALLIED FUNCTIONS.

242. IT is shown in treatises on Spherical Harmonics, that
every spherical harmonic of degree n, is expressible in a series of
the form 370 4 P; (u)sin (m¢ +a,,), where cos™u and ¢ are the
co-latitude and longitude of a point on a sphere, and P} (u) is
called an associated function of the first kind of degree n and
order m, This function satisfies the equation

2,
(1— ’)d‘: 1’""’ A1) =0 ... ).

This dlﬁ'erentlal equation being of the second order has two
independent integrals. The first of these is P, (u), and is finite
for all finite values-of y, and is infinite when g = o, The second
integral, which will be denoted by @ (1), is as we shall presently
show, infinite when p = + 1, but is finite for all other values of u,
and vanishes when p =+ .

243. Laplace, to whom we are indebted for the invention of
spherical harmonic analysis, principally devoted his attention to
the attractions of spheres, and of bodies slightly differing there-
from; and it was therefore sufficient for him to consider the
properties of the first solution upon the supposition that u <1;
but in dealing with the potentials of ovary ellipsoids, the function
P7 is required both when <1 and x>1; and the function Q' is
required when x> 1. We shall therefore consider these functions
from their most general point of view, and shall denote the
argument by x when it is < 1, and by » when it is > 1.

-B. IL. 1
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244. The function P, may be very briefly dismissed.
It is shown in Ferrers’ Spherical Harmonics that
- A
Pr(p)=QQ-p")} e <l.iiiiinnannn, 2),

or P )= -1 d"'P

where P, is an ordinary zonal harmomc or Legendre’s coefficient.
The value of P, can be expressed either in the form of a
terminating series of powers of u, or by means of the definite
integral .

P-=;l—rf'{p+«/(/.¢'—l) cos 6)* d6

=1 {I" + 4/ (u*—1)cos6}™'dF......... (4).

™
The expressions for P_ in terms of the series, or in terms of
either of the definite integrals, hold good whether < or > 1.

An expression for P? in the form of a definite integral ma,y be
found as follows. Let
v = f" sin*"0d 0
m . {“_*_ ‘\/(l"" 1) coS 0}n+..+1'

Then _
dV,__n+m+1 "{y/(u'—1)+ ucos b} sin™6d6
du V@ -1)J,  {u+y(u'=T)cos G
n+m+1 cos @ sin™6dg -
‘\/(l“ - 1) 0 {I‘""’\/(F. - 1) Cco8 0}'7';1 - (n +m+ 1) Vm+1
Integrating by parr,si we obtain

(n+m +1) (n — m) v
dp. 2m + 1 mare

Now V - ar.P,, therefore

da"P, _(n-— m+1)(n m + 2).. (n+m)V
dp™ 1.3.5..2m-1)mw

whence A
im " Inim .
pr= (et mil=p) SO s (5.
mn—m)!1.3...(2m-1)], {p+ (' = 1) cos ) N
If we transform the definite integral by putting

cos§ = PSS+ V' -1)

p+ N =1)cos¢p’
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we obtain

P S e gt 0

If ,u,>.1 =y, we must change the factor (1 — u°)™ into
(»*— 1) in (5) and (6).

245. We shall now consider the function Q.
Let us first suppose that m = 0 ; writing » for g, (1) becomes

—;li—y 1— %%‘ +n(n +11)Q,,=0 ............ (.

If we endeavour to express ¢, in the form of a series of powers
of »™, it will be found that
1 == (2r41) (2r+2)...2r+n) 1
Q= =0 (2r+1) (2r +3)...(2r + 2n +1) »*
This series is convergent if » >1, but when » <1 it is
divergent.

246. A series for @, in powers of ¥ could easily be obtained
when v < 1, but it will not be required ; we shall therefore proceed
to find an expression for Q” in the form of a definite integral.

v+w+H
where H’=1+2wzr:+w2 and v> 1. BN
Then
(.lA-fv)v—=I—I—,{1+vw w(l—v’)U}

(E(l-—v’)£=I%.{x’-—'—v:c‘-2‘-|-(v'w+2vw’+2v+3.z) U}
Also

d.iv (zU) = I}—’ {z+ 1 +w2) U},

“’g;?z(wU)=ﬂx*,{?+vw—w'—(u'w+2uw’+2u+3m) U}; -

¢

therefore 0% a- ')— +z o (xU) 0.
Hence if U= ES z", S, satisfies the equation

(1 )dS"+n(n+l)S =0;
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and since »>1, 8, must be equal to 4,Q, (v) where 4_ is some
constant. Now if a> b,

f - do - 1 log a++/(a* - b
oa+bcosh @  4(a®-b) b *
Putting a=v+a, b=4/("-1),
f‘ do - 1 o u+a:+~/(l+2‘va:+z’)
ov+#/(*=1)coshd+z (1+2vz+a*) JO'=1)
_1 log v+ae+ H
2H ®v+4+a2-H
=34,Q.2"

Expanding the definite integral and equating the coefficients
of z*, we find that
- (—1)'AQ=fw do
¥ Jo{v+ (' —1)cosh """
If the left-hand side be expanded in powers of »™, the coefficient
of ™ '—the first term in the expansion—is evidently equal to

® do — ! 1 L} -‘dz
f o (1 + cosh )™ “f -9
‘ _ n! .
1.3+l
comparing this with the series (8) for Q,, we see that 4, =(—1)",
whence

® dé
Q.= f B ET Ty eE g ).
247. We can now establish the following equations, viz.
n+2)Q,,—2n+3)Q,,,+(n+1)Q,=0...... (10),
v—1dQ,
e dgf = Qs = VQeeniiniiinnnes (11),
*—1d
ek e R 12).

We obtain from (9)

dq, - (n+1) [*{J/(—=1)+vcoshb}d
dv NO'=1)Jo {v+/(*—1)cosh 6}’

therefore

V=-1dQ, _ _/‘"’{v’—1+y\/(y’—1)cosh0}
n+l dv Jo  [v++(*—1)cosh "

== in + Q.u;

9 13),




ZONAL. FUNCTIONS, 5

which proves (11). Again from (13) we obtain
-1 dQ, f’ V(" —1) cosh 86
{

n+l dv = Jo[p+ v —1)cosh "

. sinh® 40
+0 -1 o T ¥ (* = 1) cosh O
Integrating the last term by parts, the right-hand side
®  J(*—1)cosh 6d6
n+1"Jo{v++/(@*'—1)coshf}**>

whence
»—1d
n Q =v Q Qﬁl’
which proves (12). Elimmatmg dQ./dv between (11) and (12) we
obtain (10).

248. By employing either of the definite integral expressions
(4) for a zonal harmonic, it can be shown that P, satisfies (10),
(11) and (12).
We obviously have :
P,=1, P,=v, P,=43v-1),.
v+ 1 :

G=4log =5, Q= —1
249. We can now prove three more equations, viz.
P.,Q.—-PQ.. = ,-2% ........... e (14),
R X 15),
PQ..—-P..Q. =:,,—t—} ererenieerieens (16),

where the accents denote differentiation with respect to »,
From (10) it follows that

Pr@u = PQun= 7 Pa@uy = P Q).
1 (” Qo - Qn):

[ -

1l

n+1’
which proves (14); the other two equations can be established in
a similar manner.
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250. We shall now obtain an expression for @} in the form of
a definite integral. Let

ginh*™0df
: V. —./:x {v + V(* = 1) cosh g}*™*"
- Then ,
av,  n+m+ 1 w(v —1) + v cosh 6} sinh™ 6d6-
dv V@' —-1) {v + /(@' —1) cosh "~
n+m+1 sinh™ @ cosh 68

VO =T) o{u+v(u —1)cosh0"‘"‘"+(n+m+1) et

Integrating by parts, we find
av,, (n+m+1)(n-— m)V

P e e ————— T

: dv (2m + 1)
Now V,=Q,, hence
d"‘Q _&r(n— m+1)(n—-m+2) (n+m)V

‘ v —.(Cm =T1)

therefore

=m0 = 1 (= sinh* 640 an
* T (n—=m)!1.3...2m—-1)), {v+ . /J0*—1)cosh g}/

This expression is true for all positive values of m and n such
that n 3 m.

251. We 'shall hereafter show that the potentials of ovary
ellipsoids can always be expressed in terms of a series of P and
@ functions; but in order to express the potentials of planetary
ellipsoids in a similar manner, we require the functions which
constitute thé two solutions of the equation

(1 +v) 27 d"' 1"_1‘" —n(m+1)Y=0....... (18).

These two solutlons may evidently be deduced from our
previous results by putting «w for », and rejecting imaginary
factors. Beginning with the case of m =0, the complete solution
of (18) is

AP, (w)+ BQ, (w),

where
in

(—: f" W+ SO 1) cos6)*dh ... 19),

' _y=3(n+D) dé
Qu ((V) = ( ) o iv+\/(ys+ 1) cosh 0},..” ......

P, (w)=
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If therefore we denote the two definite integrals by mp, (v)
and ¢, (v) respectlvely, the solutlon of the equation

. EZ(I +ﬁ')mf-n(ﬂ+ 1)4p=0...........(21),
may be written S ‘

¥ =A4p, () + Bg, ().

252. From (19) and (20) we easily obtain

gy=cot™y, ¢q=1-wcot s
»=1 b=
and we can show as in § 247 that,
(M+2) g + 20+ 8) 1,y — (0 +1) g, =0

.........

v+1ldg, . : T
n dy T T :

The last three equations are also satisfied by (-)"p, ; also

leqn + qu-ﬂpn = m—

Pda—q0n=

-

+
+
+

ge

P+l =

If we put cosh 8 =sec ¢, we obtain
L cos” ¢d¢

&=), peosdp+ @+ DI
therefore . 2..(0) =4 H, }

ot

1
. | | onrs (0) = @i D,
where H = 1_3ﬂ__1 ]
2"n!
253. It can also be shown that if 4 be any solution of (21),

then (1 4 »*)"" d™J/dv™ is a solution of (18); whence the complete
integral of (18) may be written

Apn + Bqu!
where =(1+ ')*m d”‘p 3

» |

= (1 + V’)!m quuj
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Neumann's Transformation.

254. Having obtained these preliminary results, we shall now
show by means of a transformation due to C. Neumann’, that a
solution of Laplace 8 equation can, in certain cases, be obtained in
the form of a series £ (£) F () (m¢ + @), where £ and » are con_]ugate
functions z and =.

Laplace’s equation when transformed into cylindrical coordi-
nates z, o and ¢ becomes

d'V+d’V 1 dV+l av _
d? " det " wdo ' @ dpt
Let V="V’sin (m¢ +a),

where ¥V’ is a function of z and = only; substituting in (26), the
equation for determining V” is

av &V 14V 'V

[\ ST ....(26).

77'}'71?'*';-%_ g =0. ceovunennnn(27).
Let V'=Us"}
then (27) becomes
au d‘U 1
g ta-mHU=0 (28).
Let z+ @ =f(E+m),

() + (@) = @) + @),
then (28) becomes

d’U Z;I.T 1’(* Y U=0. ..coruern. (29).

Now if U= WJ uv where u is a function of £ alone and vis a
function of 5, (29) may be put into the form

LA ()

u" ul’ ’U" v’!
+(§&_m+2v M,)W 0 eereeeerenes (30),

the accents denoting differentiation. From the form of the above

1 Theorie der Elektricitlits- und Wérme-Vertheilung in einem Ringe. Halle, 1864,
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equation, it follows that if (J=)™is either a function of £ or # only,
or the sum of two such functions, we can express W in a series of
terms of the type X,Y,, where X, is a function of £and ¥, is a
function of 9 alone.

255. If we put

2z + = ccos (£ — ),
then
z=ccos § cosh 7,

@ =csin £ ginh 7,
the equations n=p, £=a represent a family of confocal ovary
ellipsoids and hyperboloids of two sheets respectively ; also
J*w™* = cosec® £+ cosech® 7,
whence Neumann'’s transformation is applicable. Let
’ u=sin §, v=sinhy,
. p=cos§, v=coshqg,

Then W="U(¢/w)=TVci

and (30) becomes
vV d Vv’
4 0 G =5, 0= G = (125

This equation is satisfied by the series 2X,¥,, where X, and

Y, respectively satisfy the equations

m

d X, :
-0 G+ (0 -1 ) Xm0,

2a- u’)ddIZ" (c- 1%) Y, =0,

and C is some constant ; hence
V=33X,Y sin (m¢ +a,).

In order to determine the constant C, we observe that the
potential at an external point of the ellipsoid (z/a)* + (w/c)* =1 is
° * 7 an
V=mpact f (1 - __
TP LT IR T N @A RN’
where A is the positive root of the equation

z o’

PSR e
By § 148, equations (12) and (13), and by § 248 it is easily
seen that each of the three integrals of which ¥ is composed, are

1L
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respectively proportional to Q,(v), @' (») P,' (1) and Q, (v) P, (u);
whence C =n(n + 1) and the general value of V" is,

‘ V' =3%{4,P:(+B,Q ()}

Along the line joining the foci, » =1, and the @ functions are
therefore infinite; on the other hand », and therefore the P
functions, arc infinite at infinity. But the @ functions and their
derivatives do not become infinite at infinity, and J vanishes at
infinity ; also the P functions and their derivatives are finite and
continuous along the line joining the foci; hence for space out-
side the ellipsoid :

V=234,Q; () P} (u)sin (m + a,),
and inside
V=32ZB P; (v) P; (u) sin (m¢ +a,,),

but for space bounded by two confocal ellipsoids both. functlons
may occur.

256. If we put
@ +1z2=c cos (£ — t7),
the surfaces # =8, £ = a will represent a family of confocal plane-
tary ellipsoids and hyperboloids of one sheet; and if we put
p=sin § v =sinh 9, it can be shown in a similar manner, that the
potential at all points outside a planetary ellipsoid can be expressed
in the form of the series

V=334 g7 (v) P, (u)sin (m¢ + a,,), .

and at an internal point

V=35B_p7 () P7 (u) sin (m +a,).

257. We shall now give some examples.

Let a fixed ovary ellipsoid be immersed in an infinite liquid,
and let the axes vary with the time, but so that the volume of the
solid remains constant. If ¢ be the velocity potential, @ and b
the polar and equatorial semi-axes, and ¢ = (a®— b*)}, the surface
condition is

dp bw® | ds’
=2 (3 + )
But . . dn=acp'dy,

and  dla+2bb=0.
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Therefore at the surface
‘(’%’ = ac (31 = 1) = 2dcP, ().
Therefore : o
acQ, (v)P (;t)
=92 —=
$= AT

where v=a/c is the value of » at the surface, and the accents
denote differentiation.
In the corresponding case of a planetary ellipsoid,

_ o Gcq, (") P, (w)
¢=2 a ()

258. When a solid of revolution is moving parallel to its
axis with velocity ¥, we have shown in § 160 that if Y =yw,
where 4 is Stokes current function, x is a solution of the
equatlon

(Px_*_d'x ldy «x -0,

d? do' wdw w
whence in the case of an ovary ellipsoid

+=w% 4.0 () P, ()
and in the case of a planetary ellipsoid
¥ =3 4.0, () P} ()

Now for motion parallel to the axis, the surface condition is

¥=vat
also at the surface
w=c(y' —1)}(1 -p’)},
= bPll (F’):
’ Vb WO P
whence . Y =4Vb O

and in the case of a planetary ellipsoid
P! (w
Vie 9, () P ( (V) 28
¥=i )
259. If 24w =csec(E+y),

the surface 7 =const., is the inverse of an ovary4 ellipsoid with
respect to its centre, also

J7w™ = cosec® £ + coscel’ 7.
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In Neumann’s transformation put
u=s8in § v=sinhy,
p=cos§, wv=coshy,
a.nd the equation to be satisfied by W, becomes
(1 #’)‘fizr 2 S(1- ')%:r— (1—_1;. —1%”,.) m' W =0.
Also W=U(uv)  =Vrct
Whence remembering that the lines »=1 lie outside the surface,
and that » = w0 at the centre; the value of ¥ at an external point

will be

_eseq PO)PRG)
= ;EEA“W—SID (mtﬁ +a-),

and at an internal point

V= —22.4 o g,?,f);(“) sin (m¢ + a).

260. The value of the current function 4, at an external

point will be
cwe= , B0 P (p)
==3 A, 5.
Bl ()

If therefore the solid be moving parallel to its axis with velocity

V, the boundary condition becomes
Vre/2c =%, AP} (u),

we have therefore to find the expansion of r=,

From the equations,

cofrt =y, owfrt=(1— ) (=D},

we obtain,

rZ_ 7% rﬁr J(v—l)(l p.)
¢ ar-t V-1

Since z is a potential function, 7z can be expanded in a series
of spheroidal harmonics, and since only odd powers of » can occur,
we must bave

v (@40t — 1)—"" 2 Bsu-n anﬂ (v) P'lﬂ (»)-

Therefore

2B, 11 1-— )"
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where H =1.3.'.‘.(28—1).
. ¢ 2, 8!

' 1
Let l];=f p (1 —py Py, dp.
"Then ' - S P .

1 d -

2 +1) (2 2U=-f 1-pty Z (11— ) Emn gy,

(2n+ ) (2n+2) . _""’( f"‘) d,u( ) dp (ad .
! 2 dPQI"-
' ) =(28+1)f-‘(1—#)"17l;—ld“

1
o ampy i

-1
=(25+1)(28+2) U, - 2' 0T

Therefore
- 24 T
* (8—mn)(28+2n +3) v
' (s—1)...(s—r+1) U, :
(s—n)(s-n—l) (s—n-—r+1)(2s+2n+3)(2s+2n+1) (28+2n—-2r+35)"

NOW = (__)n f Mn+1 Pe..u d ’L
( )n 2u+l 'nl
(2n +3)(2n+5)...(4n+3)"
Therefore if s=n+r,

_2(=)"1.3...2n+2r+1)(n+1)(n+2)...(n+7)
r! (2n+8)2n+5)...(4n +2r+3) °

_ 2=y C@nt1)H, (2r+1)(2r+2)...(2n+2r+1)

2r+1) (2r+3)...(4n + 2r+3) .

Therefore  2B,,,, @,/ (4n+3) =2 (=)"(2n + 1) H,Qyu.

whence :

rzfct = pv (4 +v'— 1)—' = 2“; (=) @n+1) (4n +3) H QLo

Integrating both sides with respect to v, we obtain

p+r =1 =3 B, P,.. ] Q... v,
N =1) @y
== EB2u+lP!u+l @n+1) @n+2)’
Differentiating w1th respect to u, and multiplying by /(1 — 4?),
we obtain
=per-1y 4n+3 1
m ( )2n+2HQ9u+1Pzn+1'

(2n+2r+] ) n4r I+r

»
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‘Whence

__Viw ao(_)” (4n + 3) Qm‘ (ey) ) )
¥= 2r 7 (2n+2) P‘;“?(&j— H" P sat1 (V) P i1 ().

261. By proceeding in a similar manner, it will be found that
when the solid is the inverse of a planetary ellipsoid with respect
to its centre, the value of ¥ is*

- Vi'w ”(4'n+3)Qu+1('7) 1 1
V¥ 9p <0 (2n + 2) p - ('7) H“p 1 (V) P 41 (/")'

262. By making use either of the method of inversion or the
transformation,
2+ 1w =2csec’ § (E+ o),
the same problem can be solved when the meridian curve is an
elliptic limagon, i.e. the inverse of an ellipse with respect to its
focus™.

Bessel’s Functions.

263. The properties of the Bessel’s function J, (x) where m is
any positive integer, are so fully discussed in Todhunter’s Functions
of Laplace, Lamé and.Bessel, and Lord Rayleigh's Treatise on
Sound, that it will be unnecessary to consider them in the present
chapter, farther than to note that J, (z) satisfies the differential

equation
du  1du
e o (1——)u—0 ............... (31),

and that it can be expressed either in the form of the definite

integral

wm

Tn (@) = 7w1.3...2m— 1){: cos (@ cos ¢) sin""‘¢d¢,

or by means of the series

Jﬂ(‘”)=2'f;zz{l;

x* z

2@m+2) T2 AEm T 9 @n+ B

Py + }
2.4.62m+2)2m+4)(2m+6)  J°

1 Quanrterly Journal, vol. x1x. pp. 368—370,
2 Proc. Camb, Phil, Soc. vol. vi, p. 8.
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We shall also prove the following theorem which is analogous
to Fourier’s theorem, by means of which a given function can be
expressed in the form of a definite integral involving Bessel’s
functions.

264. If p and q be any positive real quantities, and ¢ (=) is @
JSunction which 18 finite and continuous for all values of = which lie
between the limits p and q, but which 1s not necessarily finite at the
limaits, then the definite integral

f " f "xu (@) I, (M) I, (A@) e, (32),

is equal to ¢ (=) when a lies between the limits p and g, and s equal
to zero when = lies beyond these limits.

In order to prove the theorem, consider a thin plane conductor
bounded by two concentric circles of radii p and ¢, which is
electrified in such a manner that the density on either side is
equal to

3 ¢ (=) cos me.
rI‘;he potential will be

Ve f b f”""" ue (u) cos m¢'dude’
B {Z+ &'+ u' — 2wucos(¢p’ — )l
Let ¢ —d=19
R =’ + u* — 2aru cos 9.

2 ug (u) (cos me¢ cos mn — sin m¢ sin ma) dadq
Then V= f [ T

The second integral vanishes; also since

fme‘“Jo (MR)d\ = (2* + RY)}
0
the first is equal to
) » -
2-cos m¢ f dx f du f €*2ue (u) cos mpJ, (AR) dn.
0 a Jo
Now' J,(\R) =J, (&) J, ) + 25, J, (Aw) J,, (M) cos m,
whence V=27 cos m¢ j j e*u (u) J,, () J,, (Aw) du. “

The denmty ‘ =— i (‘if) |

1 Todhunter, Functions of Laplace &e. § 458,
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hence this quantity must be equal to ¢ (&) cos m¢ when p>w > g,
and must be zero when = lies beyond the limits p and ¢, whence

j:de:)»uq& (wW)J, () J,Aw)du=¢(w),p>w>q

=0 ﬂr>p}.
orw<g

265. If a charged conductor of the form which we are con-
sidering is placed in a field of force, the density will usually be
infinite at the edges, but d V/dz will always be finite except at the
edges ; whence although it is necessary that ¢ (=) should be finite
and continuous between the limits p and g, it is not in general
necessary that it should be finite at the limits. There are however
two special cases, viz. (i) ¢ =0, p finite; and (ii) p = 0, ¢ finite,
which require separate consideration.

The first case is that of a circular disc of radius p; and if
¢ (=) became infinite when = = 0, there would be a singular point
at the origin.

The second case is that of an infinite plane screen having a
circular aperture, and if ¢ (&) became infinite when @ = o, the
density would be infinite at an infinite distance from the aperture,
which seems to be physically impossible.

If therefore in the first case ¢ (@)= when ¢=0; and in the
second case ¢ (w) = when p =0, the theorem could not be safely
employed.

If ¢ (») is finite and continuous for all values of = between
0 and o inclusive, we may put p =00, ¢=0, and the theorem
beeomes

¢ (@)= f: dn f:xuqb W) J, (M) T, (Aw) At ......(33)

for all positive values of =.

266. - We must now consider a class of functions analogous to
Bessel's functions, which are obtained by changing « into «z.

Putting = 2, (81) becomes

du  1du m
d?%d‘f(”?')““o ............... (34).

This equation, as we shall proceed to show, has two independent
_ integrals, one of which is finite or zero when 2 =0, and is infinite
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when 2= w; and the other is infinite when 2 = 0 and zero when
z=o0. *We shall denote these two solutions by the symbols I (z)
and K () respectively.

The function I, is derived from J,, by changing « into « and
rejecting imaginary factors; we thus obtain

I, (2)= -;ﬁ—:;—%m——_f) f : cosh (z cos ¢) sin™¢pdd ...(35),
or as a series

. wﬂ x’ 4
I-(“)=M{1+2‘(zm+2)*2.4(2m+§) (2m+4)+'"} (36)

267. In (34) put u =2z"v,, and we obtain
d'v, 2m+1dv,
i Tz da

in this put 2’ =y, and we obtain

y‘g,ﬂ +1) J»—}v =0,

-v,=0,

Differentiating with respect to y, we obtain

dv,,
Ty = Upise
Hence if %, denote any solution of the equation
du  ldu
=t 1 wdp U= 0 (37),
a solution of (34) will be
. d » )
u, w"‘{ aq w')} ................ eeee. (88).

If therefore the value of K, is known, the value of K, can be
obtained by means of (38).

268. Perhaps the simplest way of determining K, is derived
from the consideration that Bessel's functions are limiting forms
of spheroidal harmonics. Let cv be the major axis of an ovary
ellipsoid, and let

cJ@'=1)=r, a(@m+1l)=\%,
then if ¢ and n increase indefinitely, whilst » approaches indefinitely

near to unity, but so that both » and A remain finite, the ellipsoid
ultimately becomes a circular cylinder.

B. II. 2
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In equation (7) change the variable from » to r and we obtain
.
(r,d’u du) 'n(-n+1)u=0’

d*u ldu 1
ar trdar

which ultimately becomes

du ldu _,
T rar V=0

dr‘+2 dr ¢

which agrees with (37) if Ar =a.

Ale @, f PV — 1) oosh B
- f exp {— (n+1) log [y + v/(+* — 1) cosh 4]} 40
)
Now (n+1)log {vr+ J/(v"—1)cosh 6}

=3 {1+ J(1+ 406"} log {(1 +7*/c®! + r/c . cosh 6}
=Ar cosh 8,

ultimately ; hence the limiting form of @, (v) is

Q.= fme-kroosho de;

whence it follows that

(@)= f:e"'“""’do .................. (39).

Since K, (z) is infinite when #=0, it is evidently the solution

we require.
Another form of K, may be obtained by means of the integral

f“’cos)wdv T
— =g €%
0o @+ 2a

b

for putting z =sinh @ in (39) we obtain-
e—aV 1+2") g,
k= e
J‘ f cos w¢d¢dz
T 1+ ¢“ + 2
_ f cos z¢dd
(1+¢"
cos xdx
.............................. 40).
f @ + )} ()




v
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Whence by (38)

_(=)"1.8...2m —1) [® cosxpdd
K,.= ) N ¢')? s TR (41).
Also K/ =2K, coooirveeenresrsennnnn. (42).

269. By means of the integral
fm e+, (u)du=(1+¢%)7},
[

we obtain
= ” coswd‘ﬁ _f ® -¢u
% fo a+¢)t Jo fo e~ #4J, (u) cos xpdpdu
_ [ @
B 0 DR e

_ [ )y (ax) da
= | T e (44).

270. We shall now apply the preceding results, to determine
the current function due to the motion parallel to its axis of the
surface formed by the revolution of a cardioid about its axis.

If E+m=c (e~ =)
we obtain E=(c/r)tcos } 6, n=(c/r)}sin} @
and the surfaces £ =a, =8 are the surfaces formed by the revolu-
tion of a cardioid about its axis. Also

Je = f—' + 1’-1
hence Neumann'’s transformation can be employed.

In § 254 put v = & v=1, and (30) becomes
1d (. dW\ 1d/ dW of1 , Ny
Fa(E%) a0 E) ) =o
and this equation is satisfied if
W={4,1.(\) +BK, (M)} J,, (Af)
where A is undetermined. Also
| V= Wr" (o)
whence V=cr"2{4,I, (\g)+ B, K, (M)} J. (A) sin (m¢p +a,,).

The preceding value of ¥ is a suitable expression for determin-

ing the potential of the surface n = const.
2—2
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Now a cardioid is the inverse of a parabola, and a parabola is
a limiting form of an ellipse; and since the @ functions are suitable
for space outside an ovary ellipsoid, and the P functions for space
inside, it follows that the K functions are suitable for space out-
side a paraboloid of revolution, and the I functions for space inside.
Hence the I functions are suitable for space outside the surface
formed by the revolution of a cardioid, and the K functions for
space inside ; moreover the conditions of the problem do not enable
us to assign any value to A, and we must therefore give it all
values from o to 0, and replace the summation with respect to A
by a definite integral. Hence the potential outside the surface
formed by the revolution of a cardioid is of the form

V=orZsin (mp+a,) [ FO) L) Ju (8 AN,
and inside

VoS sin (mp +a,) FO) K, (\) T, (A8 dh.

271, When the surface formed by the revolution of the
cardioid (r/c) =sin 3@ or =1, is moving parallel to its axis with
velocity V, the value of ¥ may be written

cw [* I, (M) J, (AE)
1"':7]0 F(X) Il()") dh:

where F(\) has to be determined from the surface condition
Vrw/20 = f FO)J, (0 dn.

Now when =1,
rwfct = 2/(1+ £

=2 f: f:w (L +a%) J,(a) J, (\f) dadh.
By 43), K,(\)= f' 6J,(6) (\F + 6°)" d.
Therefore 2K, = K',=~ 2 [ " 0J,(6) O + €0 do.
Also 6T, = 7.+ 07,
Therefore  K,=—\ f: (. + 0) (A2 + 67 do.
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Integrating the last term by parts, and then putting 6 =a,
we obtain

K, (x)=—4x'f°a'Jl () (1 + o) da.

Therefore 73 = § [ j NE, (\) J, (AE) d\,

whence F(\)==1VeA'K, (M),

and ¢_-Zﬁ’f rIK(S)I(x)J(xf)dx

This expression, as well as the corresponding expression for
the current function due to the motion of the inverse of an
ellipsoid of revolution with respect to its centre, is of such an
exceedingly complicated character, that it does not seem probable
that progress is to be looked for in the direction of new surfaces
of the third and higher orders.

Toroidal Functions'.

. 272. The system of conjugate functions

z+y=atang (E+ ) ceeenennnnne verned(45),

has been discussed in § 120, and it is there shown that the curves
7 = const., represent the system of circles

&+ 4y —2aycothp+a'=0............ +..(46).

The centres of each circle of this system lie on the axis of y,
and none of the circles cut the axis of 2.  If therefore we put

z+w=atan} (E+m) .cocnirinnnnnnn, (47),
(46) becomes
£+ o' —2awcothy +a*=0,

which is the equation of a family of anchor rings or tores, whose
common axis is the axis of . When 7= o, the tores degenerate
into the circle formed by the revolution of the points 4 and B.
This circle is called the critical circle.

1 Hicks; Phil. Trans. 1881, p. 609: Ibid. 1884, p. 161.
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Y

Also since Jw =sinh 9, Neumann’s transformation applies; if
therefore we put =1, v =sinh #, » = cosh 9 in (30) the equation
for W becomes '

a W d aWw m'w
W‘*‘g; (”'—1)7;—?——_1 +iW—0 ......... (48).

Now W must evidently be periodic with respect to § and
must therefore be of the form Zy, cos(nf+a,) where n is a
positive integer, and x, i a function of 7 alone. Substituting in
(48) we obtain

d 3,
5, 1= %%"—11"4_&;, + @ = Dxa=0.uueenn. (49),

whence

V = (cosh 5 + cos £)Y 23 i, cos (nf + a,) sin (me + B,)...(50).

The two integrals of (49) are called Torotdal Functions, and
will be employed in Chapter XIV. in the discussion of circular
vortices.

Equation (49) shows that y, is an associated function of degree
n — 4 and order m; but it will not be necessary to enter into the
general discussion of this equation for all values of m, since in the
hydrodynamical applications which follow, the functions of orders
zero and unity are the only ones required. We shall begin with
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the case of m=0, and show that if in the definite integral
expressions for the two kinds of zonal harmonics, » be changed
into n—3§, the resulting integrals constitute two independent
integrals of (49), one of which is finite when »=1 and infinite
when v =} and the other is infinite when »=1 and zero when
v=0o0.

278. If in (49) we put m = 0, we obtain
d dx.
E;(l—-v')—dx;+(n‘—i~)x.=0..., ......... (51),

which is the equation satisfied by zonal toroidal functions. Writing
for brevity C and S for cosh 7 and sinh 7, we know that the zonal
harmonic of degree n of the first kind is expressible (omitting the
factor 7™') in either of the forms

f'(C'+Sco'30)"d9 orf'(0’+Scos€)"‘"d0,

the second of which can be deduced from the first by means of
the transformation (C+ Scos#)(C+ Scos@)=1. Similarly if
we put

P.= f (C+Scos YD gdg ... (52),
L]
it can be shown by means of the same transformation that
P.= f' (C+Bcos@) ¥+ gg ... (53).
[

We shall now show that either of the definite integrals (52)
or (53) is a solution of (51).

From (52) we obtain
4P i on- 1) [ (€+ 8 con 1 + G000 6) db.
Therefore |
$8_j(n- 1)[(C +85 008 %0 (0(0+ Scon 0) -1} df
3@ =1) (CPa=P,) coeeerererrrreresreerrrenrans, (54),
and from (53)

dP, *C(C+Scosf)—1
e A Y P e

==} (@2 +1)(OP, = Pop) ceverereereesrerns (55).

dé
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Differentiating (54) with respect to », we obtain

2 (%) =4 (@n-1) (Pt 0% - L)

=3@n—1){P,+}(2n—1)C08*(CP, - P.)
-$(@2n-1)8*(P,-CP, )}
= (”’ - *) P )

d dP,
or Cdy (l—v')d—” +(n'-}P,=0,

which shows that the definite integrals (52) and (53) are solutions
of (51).

Eliminating dP,/dv from (54) and (55) we obtain the sequence
equation
2n+1)P,,,—4nCP,+(2n-1)P, =0...... (56).
Equations (54), (55) and (56) are what equations (12), (11)
and (10) become when = is changed into n — 4.

From (52) it appears that P,= o when C ie. v=o00; and
therefore P,= o0 when 5= o ; also when =0, C=1, S=0 and
P,=m

274. Again let
W=, =
ECET R
28
n_ =1 — e~
k C+8 1—e
Then
» dé i d¢
P, =f. (C + 8 cos 0)’ = 2’0*], (I—Ic”sin’cﬁ)* =WF ... (57),
and :

P,= [ (C+Scos6) do=2" " (1—ksin ¢)f dp = 27V (58),

where F” and E’ are the first and second complete elliptic integrals
to mod. ¥

Having obtained the values of P, and P,, the values of the
successive functions can be calculated by means of the sequence
equation (56).
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9275. We have shown that the zonal harmonic of the second
kind is expressible in the form
[
o (C+Scoshg)***’
and if we put

® dé
< —f o (C+ S cosh g)¥3»+1)°

it can be shown, as in the case of the P functions, that the above
definite integral is a solution of (51). Also when C=o, Q,=0;
and when C=1 or =0, Q,=». Hence the two functions P
and @ constitute two independent integrals of (51). It can also
be shown that the above value of @, satisfies equations (54), (55)
and (56).
Again,
& Q, = f * dé
* J o (C+8cosh )}
® de
e .
o (C+8Scoshé)

In these change 6 into 26, and then put cosh & =sec ¢ ; then
d@ = sec ¢pde, also when ' =0 or 0, ¢ =0 or }m; therefore

ae
=2
% fo(a-s+2scosh'a)*’
o {C+8—(C~ 8)sin* ¢}’
S 2T e (59)
And
o de
=2
% f o (C — 8+ 28 cosh® 6"
=2]*' cos’ pd¢p
{C+8—(C - S)sin*¢}}

i'k —k* sin®
ch o (1 - k'sin’ §)} i

_2F 2%* dé
N/ 3 (1 K’ gin® ¢)’
=% N F—E). e, (60)

And the values of the successive Q functions can be calculated
by means of the sequence equation (56).
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'276. At the critical circle n=0c0, and at all points on the
axis of 2z, 7=0; and since P=o when 9=, and P== when
n =0, the P functions are not suitable for space within a tore, but
are suitable for space without the tore. On the other hand
Q,=0 when =00, and = when =0; hence the Q functions
are suitable for space inside a tore but not for space outside.

If therefore the potential is symmetrical with respect to the
axis of the tore, its proper value for points outside the tore will be
V=(C+cos )} 3, AP, (cos nf +a),

and for points inside
V'=(C+cos 'S, B,Q, (cosnk +,).

277. A different expression for ¢, may be obtained as follows.
The inverse distance of a point from the origin is

1_1 /C+cosk

r C—cos§’

Since "' is a potentml function which is infinite at the origin
and which vanishes at infinity, it is evident that »~! can be
expanded in a series such that

rt=a"1(C+cos £ B,Q, cos n,
whence (C—cos§) ' =3B,Q, cosn,
and therefore

* cos nfd0
Q = f N ad’
o (C' —cos 6)

1
B°Q°='r—rfo (C’—cos o)’

The quantity B, may be some function of =, but if we
substitute the above value of @, in the sequence equation (56), it
will be found that it will be satisfied provided B, = 4, where 4 is
a certain constant which is independent of n. In order to find
A, we have

1~ do
AQ == | %
< ""o(C’—cose)é
2 in d¢

= wJO+1J 4 (1 -2 sin® p)b’
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where A'=2(C+1)"'. Now k™'=C + 8, therefore

4  4(C+8) _ 4
T+k Q+C+8? (C+8)(C-S+1)

3 4 2 .
“C-8+2+C+8 C+1 ™

Therefore
4Q, = 2.2k (i de
©wm@A+R)) o (1 -4k + 5 sin* @)

=277 (2k)} F (k)
=a12} Q.,
therefore A =="',/2.

Similarly from the value of @, it can be shown that if n is not
zero, A =27 4/2; therefore

® dé
<% —[., (C + 8 cosh ) E»+D ;

cosnf dé (61).

O—com @)

278. The following relations between the P and @ functions,
where the accents denote differentiation with respect to 7, are also

useful, viz.
P, Q.—P.Q,., =2m/2n+]1)............... (62),
PQ. - PuQu=/8eecreereerrereareerennns (63),
PP Q=3+ ... (64).

In order to prove (62), substitute the values of P,,,, @, ., &c.
from the sequence equations, and we obtain
2n+1) (Ppy,@ — PQ..)) =(2n-1) (P.Q, _,
=P 1Qo —-P oQ|
=4(EF+FE-FF)

- Pn-IQu)

= 2.

The other two equations can be proved in a similar manner by

means of equations (54) and (55).
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279. When the motion of a liquid about a tore is symmetrical
with respect to the axis of the tore, and is irrotational, we have
shown that the current function ¢ = X"" where x' satisfies the

equation

ds Tde' ' w dw
whence  x'=(C+c)'=(4,P.+B,Q,}) cos(nk+a,),

where ¢=cos §, and P,! and Q,' are the two solutions of the
equation

d du u .
Differentiate (51) with respect to », and put
A X L g
v=0"-1) v S ay"

Then 7 0
v  2C dv
ST+ F - DF=0
d . d
or a;(l—v’)ag— f”,+(n’—*)v=0;
whence P‘—S‘—if-’—df, Q'——Q
m
Let us now choose two new functions U, V, such that
U =8P =8 v a_90i=—8% . (63),

dn’

and therefore
| v, av,
G =t =D SR, Gr=— (- DS
whence, remembering that @ =aS (C+cos £)™, the general value
of ¢ is
¥=(0+0) 3 (4. U, + B,V,) cos (nf + a)......(66).
The function U clearly belongs to space outside the tore, and

the function ¥ to space 1nslde hence outside the tore the proper
value of y is

¥ =(C+0) V3 AU, cos (nE+a)..cnrenns (67),
and inside Y =(C+0) V3 BV, cos (nE+,).ecurnrnnen. ..(68).
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Again,
L== 80—+ 1) (00— QL)

29n+41 [~ Ccosnd—cos(n+1)0
“2ye ), (C = cos §)}

dé

=(n+1}) 2"fo {(C — cos 8)} cos né
+ (C — cos 6) ¥ sin n8 sin 6} d¥.
Integrating the last term by parts we obtain

= —j(dnt - 1) 2" f(a co8 O)} cosnf d......(69).

280. Let p and ¢ be the velocities perpendicular to the
surfaces 9 and £, in the directions shown in the figure, then

p= sgsin0+§%cosd;
‘but cos 8 = Jdz/dE, sin 0 = Jd=/dE,
therefore p =Jat dy/dE.
Similarly q= 1 Z—‘p 86— = ‘ff sin 6,
and cos § =Jdw/dy, sin0=—Jdz/dy,

whence g=Ja dy/dn.
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281. We can now obtain the value of the cyclic constant ; for
this quantity is the circulation round any closed curve embracing
the tore once. Let the curve be % =1%’, then putting cos £ =¢

- 14
= -rqu __..ﬁ'd")

S%“-ft'(a+0)d—

Consider first the general term 4,U, cos nf in ¥, the circulation
due to this is

_.g_f {(04. )*dU S(G’+c)'*U}cosn£dE

—24.a" f {(o+ F @ =P, 3T, (0+c)-*} cos nE dE
== 4,07 (-r 2 (TP, + U.Q)

p 9 _ o 9P,
=—m(-) 42t

Similarly the term involving V, produces the term
_ SB.a,“2‘ (Q dQ Q dQ)
also the terms in sin n§ evidently disappear, whence
k=—=ma 2T A, i, (70).

282. The value of k is e~7, and since 7 is very large in the
neighbourhood of the critical circle it follows that if the cross
section of the tore is small, & will be small at all points within the
tore, and also at all points outside the tore which are not far from
its surface.

In the hydrodynamical applications of Chapter XIV., the cross
section of the tore will -always be supposed to be small in
comparison with its aperture, and the values of the functions will
only be required at points within the tore or in its immediate
neighbourhood ; and it will be sufficient to employ approximate
values of the functions which do not involve powers of % higher
than the second.

Now if L =log 4/k, and k be small,
FE)=L+3i(L-1)+d 4 (L-§),
EF)=1+43"(L-3)+ k(L -3
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Substituting in (56), (57), (58), we obtain
P,=2k {L+}(L-1) 1,
P=2k*1+3(L-1) W},
P,=4k"41 + 34,
The function P, contains the factor k™ ®~ which is very
large if k is small, but it will hereafter be found that P, (k) is

always divided by P, (b) where b is the value of k at the surface
of the tore; hence the term A4,P, will always be of the form

A’ (b/k)¥®*Vy_where 4’, is a finite constant and u, is a quantity
of the form "

o+ af’ +...(B,+BL + B "+ ...... )i;

when £ is small £™L is always small except when n =0, also b/k can
never be greater than unity, hence the preceding approximate
values of P,, P,... may be employed.

From (56), (59) and (60) we obtain
Q= mk (1 + 147,
Q= 4mkt (L + 449,
Q=g (L+ 4 ¥),
where the series in brackets are carried to the second power only.

283. By means of these equations combined with (65) the U
and V functions can be calculated, but since U, and V¥ respectively

contain &k~ ¥®**1 and k™1 ag factors, it will be more conve-
nient to introduce two new functions R, and 7,, such that

AR R U, 1kt T =V, ... (71)
and we shall obtain

By=—{#L-1+3(L+ 1)k
R=3{1-3(L-1}) K} } ............ (72),
BR,=1-3k

T,=1+1F

T=3$01-% k‘)} .............................. (78),
T,=%4Q1-1¥)

where the series are carried as far as ¥*. It will not be neces-
sary to employ the functions of higher orders than R, and T, or to
retain higher powers than £". '
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The general value of the current function may now be written

¥v=(C+0)¥3 (4, O/k}*™ R, + B, (k/b)“’“ VT } cos (nf + a,)
...... (14),
in which form it will hereafter be employed.

EXAMPLES.

1. Apply Neumann’s transformation to prove that the potential
at an external point of the surface, which is the inverse of an
ovary ellipsoid with respect to its focus, can be expressed by means

of a series of terms of the type cr™ P, (v) P, (u) sin (m6+a,); and

at an internal point by a series of terms of the type
or™'Qr (v) P77 (u) sin (mb + ) ;
where v =cosh %, p =cos £; and z + (@ =2¢ sec* § (£ + ¢7).

2. Prove that
L= - DY (u+9)* =43 (=) @0 +1) Q' () P, (w);

hence show that if the surface, which is the inverse of an ovary
ellipsoid with respect to its focus, be moving with velocity V'
parallel to its axis in an infinite liquid,

V=8V % (- )(2n+1)g: EV;P‘,(u)P‘.(y),

where v is the value of » at the surface.

8. Establish the following results:

@) f ;{o (az) cos bzdz = §m (a* + b4

(ii) [ rne"“”l’{‘, (b=) dz= ("~ o)V tan? B —a*/a; b>a

a-l-(a b')*

= 2\ ~%
=1 (a*-b")""log —@ b')*’

a>Db,

@) [ R, (@), Go)de= @+ )P F B @+ 897,
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4. Prove that

[, e sin o, (um) dys = sin™ 20/(p + g)
where P=22+(w+c), ¢ =2+ (w—c)
5. By means of the definite integral
f:oduf;cos z cos u’ (2! — A7) du,
prove that Jy(A) =271 J. :Dsin (A cosh ¢) de.
6. Prove that if
V=2x" [ Tdy. f: €™ ** cos v cos uvJ, (uw) dv,

then V=J,(A\w), when z=0and w<e,
and that dV/dz=0, when 2=0 and » >¢,

7. Prove that if

V=271 ft du f "¢+ sin \ sin pod,| (pa) dy,
[ [

then V=J, (\w), when 2=0, and w <c,
and that dV/dz=0, when 2=0and = >c.
8. Prove that

f e (J, (b)) do = 277 (a” + 4b*)~F F {25 (a® + 45%)7H).



CHAPTER XIIL
RECTILINEAR VORTICES.

284. THE general theory of vortex motion has been discussed
in Chapter 1v.; and we shall now consider the special case
in which all the vortex lines are parallel to the axis of z. We
shall also include the case in which cylindrical masses of rota-
tionally moving liquid composed of such vortex lines are sur-
rounded by irrotationally moving liquid. If the whole liquid is
supposed to extend to infinity in the positive and negative
directions of the axis of 2z, and the boundaries of the liquid
consist of cylinders whose generating lines are parallel to this
axis, the problem will evidently be one of two-dimensional motion,
and the solution will apply to any limited portion of the liquid
bounded by two fixed planes perpendicular to the axis of .

Since the motion is in two dimensions,
w=0, du/dz=0, dv/dz=0, £=0, =0,

dv du
and & dy " =2 i 1);

also 0¢/ot = 0, and therefore { remains constant for ea,ch particular
element of liquid. If 4 be the current function, u = dy/dy,
= — dyr/dz; whence, substituting in (1), we obtain
oy Y

. it a &y +28=0

Thls equatmn must be satisfied at every point of the liquid

where vortex motion exists. At every point of the irrotationally
moving hquld which surrounds the vortices £ =0, and therefore

(5‘,: + gf =0 i 3).
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Equations (2) and (3) show that y is the potential of in-
definitely long cylinders composed of attracting matter of density
&/2m, which occupy the same positions as the vortices.

285. Let us now suppose that a single rectilinear vortex,
whose cross section is a circle of radius a, exists in an infinite
liquid. In order that the cross section may remain circular, it is
necessary that ¢ and 4 should be functions of r alone. The con-
ditions of steady motion § 38 (387) require that ¢ should be equal to
an arbitrary function of +r, which for the present we shall suppose
to be equal to a constant.

Equations (2) and (3) now become

&y, 1dy,
7t T 26=0 ......oiiiennnn. (4),
which gives the values of Y inside the vortex, and
dl‘l": 1 d‘l’i '
T ar =0 (5),

which gives the value outside.
The complete integrals of (4) and (5) are
¥, =4 logr+ B -§&*
and ¥,=Clogr+ D.

Now 4, must not be infinite when » = 0, and therefore 4 =0 ;
also at the boundary of the vortex, where » = a, :

- Vi=¥y  dyfdr=dy/dr;
whence B~-3ta’=Cloga+D

—ta’=_C,
and therefore C=—la*=—{o/r=—m,

where o is the area of the cross section, and =m is the strength of
the vortex. The constant D contributes nothmg to the velocity,
and may therefore be omitted, whence

=43¢ —=7r) —mloga.................. (6),
1]», =—mlogr..cccociiiiiniiii, )
Now — d+/dr is the velocity perpendicular to r, whence inside
the vortex
—dyfdr="0r .o, (8),
which vanishes when =0, and outside
—d¥rjdr=mlr........c.oiiiinninnn 9).
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Hence a single vortex whose cross section 18 circular, if existing
wn an infinite liquid will remain at rest, and will rotate as a rigid
body. It will also produce at every point of the irrotationally
moving liquid with which «t s surrounded, a velocity which 18 per-
pendicular to the line joining that point with the centre of its cross
section, and which 18 nversely proportional to the distance of that
point from the centre.

If ¢ be the velocity potential outside the vortex

=—}mulog (z+ y)/(= — oy)
=mtanY/T coeiiniiiiii (10),

whence ¢ is a monocyclic function whose cyclic constant is 27m ;
‘and therefore if « be the circulation due to the vortex, its strength
is equal to }«.

286. If other vortices exist in the liquid, or if the liquid instead
of extending to infinity is bounded by fixed or moving surfaces, the
cross section, if of finite area, will experience a deformation, and
the preceding expressions for ¢ and 4 will not continue to hold ;
but we shall hereafter show that if the cross section is small, this
deformation may be neglected, and (6), (7) and (10) will give the
values of ¢ and 4 so far as this particular vortex is concerned.
Also since every vortex of finite cross section may be divided into
elementary vortex filaments, the value of ¥ at any point (z, y) for
any number of vortices will be

v=—2"7"[¢log {(z — &)+ (y — 9%} da'dy’ ...... (1),
where the integration extends over the cross sections of all the
vortices.

It therefore follows that the component velocities due to any
number of vortices will be determined by the superposition of the
velocities due to each, and will be given by the equations

=-3m(y—y)/R, v=3m(z—a)R",

where R'= (z —=z,)’ + (y —y,)",and (z,, y,) are the coordinates of any
of the vortices. Now if (u,v) be the component velocities at any
point of one of the vortices the expressions 3 (mu) and 2 (mv),
where the summations extend throughout the vortices, vanish ; for
they each consist of pairs of terms of the forms mm, (2, — «,)/R*
and mm, (z,—x,)/R". Hence if m be regarded as the mass of
a distribution of matter, the centre of inertia of this mass remains
stationary throughout the motion.
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287. Let us now suppose that in the irrotationally moving
liquid which surrounds a vortex whose cross section is circular, the
circulation is different from that which is due to the vortex, and
consequently the tangential velocities at the common surface of the
vortex and the surrounding liquid are different on either sides of
this surface. This surface will therefore be a surface of discon-
tinuity which possesses the properties of a vortex sheet. We shall -
also for greater generality suppose that the density of the liquid
forming the vortex is different from that surrounding it.

Let o be the density of the vortex, «” the circulation due to it;
p the density of the outside liquid, « its circulation ; also let ¥, ¥
be the current functions inside and outside the vortex.

Then V' = — 3 + const.,
and £=—a f u (d¥'/dr), d6 = 27rEa’.
)
Therefore ' = — ¥'r*/4ma’ + const.,

¥ = — /27 . log r + const.

Let p', p be the pressures in the vortex and the surrounding
liquid, then

Ldp _o'_ o

adr r  4w'a*’

p_xv P

Therefore —=goat o
p 0__ &

also p p 8mr”

where P is the pressure at the centre of the cross section
of the vortex, and II is the pressure at infinity. At the surface of
separation p = p’, whence
P=1I - (¢’p + «0)/87"a".
Hence if II < (¥ + £70)/87a’,
p’ will become negative for some value of 7 < a, which shows that

a cylindrical hollow will exist in the vortex, which is concentric
with its outer boundary.

The case of o=0 is that of a cylindrical hollow surrounded
by liquid in a state of cylic irrotational motion. The condition for
the existence of such a hollow is that p =0 when r = a, hence

II = x%p/87%®.
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288. We must now investigate the stability of the preceding
case of steady motion.

Let us suppose that a small disturbance is commmunicated to
the liquid ; the equation of the common surfuce of separation may
be taken to be of the form

F=a+acosnf+Bsinnd—r=0............ (12),

where n is any positive integer, and a, 8 are functions of the
time which in the beginning of the disturbed motion are small
quantities, whose squares and products may be neglected.

Let the current functions be
Y = —x/2m.log 7 + (A cos nf + B sin nb) (a/r)"...(18)
outside the vortex, and
¥ = — kr*/4mwa’ + (C cos nf + D sin nb) (r/a)"...... (14)
inside the vortex. The boundary condition is

dF 1dFdy 14dF dy .
az-l-;%d—e—;ﬁﬂ_o ............ (10).

Substituting the value of F from (12) we obtain

dcosn0+8'sinn0——% nd‘l’(asmna — B cos nf)=0.

If U be the tangential velocity of the surrounding liquid at the
surface of separation in steady motion, we may in the small terms
put dyr/dr = — U, whence

@ cos n8 + Bsin n6 + na™ (4 sin nd — B cos n)
—nUa™ (a8in nd — B cos nf) =0.

Equating the coefficients of sin #6, cos né to zero, we obtain

A=—-aB/n+ Ua
B= ad/n+ U,B}

Similarly if U’ be the tangential velocity of the vortex at the

surface of separation in steady motion, we shall obtain
C=—aBin+ Ua
D= aafn+UPB }

Since the disturbed motion will necessarily be irrotational it
will have a velocity potential, and by employing the method of
conjugate functions‘ it can easily be shown that

= (A sin né — B cosnb) (a/r)",
"=~ (Csinnd — D cosnb) (r/a)".
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If 8p, 8p' be the increments of the pressure due to the
disturbed motion just outside and just inside the vortex, we must
have

oo ] i
= — (4 sin n8 — B cos n) + U’a™ (a cos nd + B sin nf)
—nUa™ (4 cos n6 + B sin n6)
=(— A + U*8/a —nUB/a)sin né + (B + U’a/a — nUA/a) cos n0
= {aB/n—2Ua- UB (n—1)/a} sin nd
+ {ad/n+2UB — Ua(n —1)/a} cosnd......... (18),
by (16). From the general equa.tions of motion we have

-2 gd‘f 20,

+ 28u,

whence ~ple=¢ + 3¢+ 28y
Hence .
)
Loy (F) - (v - 1)
= (C'sin nf — D cos n) — U*a™ (a cos nd + B sin nb)
+ U'na™(Ccos nb + D sin nf) + 2U*a™ (a cos nd + B sin nb)
—2U'a™ (Ccos n6 + Dsin nb) ‘
={C+ U"B/a— UD (n—2)/a} sinné
+{=D + U%ja—UC (n—2)/a} cos nd
={—aB/n+2U (n—1)a/n+ U’ (n—1)/a} sin nd ’
+{- aéfn—2U (n—1) B/n+ Ua(n—1)/a} cosnf.........(19),
by (17). In (18) and (19) write « and B for aa and a8, and w and
v for U/a and U’/a; since dp = &p’, we obtain by equating the
coefficients of sin n6, cos n@ in the expressions for dp, &p’ given by
(18) and (19),
d(l+a/p)+ 28 (nw+v(n —1) o/p} —n (n— 1)a{*w’+'v’a/p}='0} (20).
B1+eo/p)-2d{nw+v(n—1)a/p} —n(n—1)B{w'+v’a/p}=0
To solve these equations put a =L cosAt, 8 = Lsin M, also let
k=a/p, and we obtain _
M +k)—2n{ {nw +h(n—-1) o} +n{n-1) (W' +k’)=0...(2]).
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In order that the steady motion should be stable, it is
necessary that both roots of this quadratic should be real.

Case I. Suppose that there is no core, but simply a cylindrical
hollow round which circulation takes place. Here ¢ =0, p=0,
whence from (18) or (20) we obtain

M-—2umw+n(n—1)w'=0,

the roots of which are (n+4/n)w. Hence the étea.dy motion is
stable, and the disturbance consists of two trains of waves travelling
round the ring in the same direction.

Case IT. Let the vortex be of the same density as the surround-
ing liquid, and let there be no slipping at the surface of separation.
Here w=v=¢{, p=0, k=1 and (21) becomes

AM=-A@2n-1D+n(n-1) =0,

the roots of which are n{ and (n — 1) & Hence the steady motion
is stable. It might at first sight appear that the disturbance
consists of two trains of waves whose periods are 2w/nf, and
2m/(n — 1) ¢ respectively ; but in order to solve this case it is
unnecessary to take into account the pressure condition, since the
two values of 4 at the surface of separation must differ by a
constant quantity, which together with the condition of no slipping
and the boundary condition (15) are sufficient to determine the
disturbed motion. It will thus be found that the equations of
motion become

i+ -1 ¢ta B+ (@n-10¢8=0,
and therefore the solution A =n{ of (21) must be rejected, and the

disturbance consists of a train of waves travelling round the
cylinder whose period® is 27/(n —1) &

Case IIL In the general case the condition that the roots of
(21) should be real is that
fnw+k(n—-1)v})'—n(n—1)(k+1) (W' + k") >0,
or
2kn(n—1)wv—n{ln—1)k=1}w'—k(n—1)(n+k)v'>0...(22).
If w=v the condition becomes
n-kKFm-1)>1,

1 Sir W. Thomson, *On the Vibrations of a Columnar Vortex,” Phil. Mag. Sep.
1880. J. J. Thomson, Motion of Vortex Rings, p. 4.




KIRCHHOFF'S ELLIPTIC VORTEX. 41

which requires that £ < 1. The steady motion will therefore be
unstable if the density of the vortex is greater than that surrounding
liquid.
Let w/v =1+ ¢; then (22) becomes on dividing by =%,
— 2
1——’£+’i,+—2g—q'{(l-—l) k—1}>o.
n' n

n n n

If ¢ is not zero, it is always possible by taking » large enough,
to make the left-hand side negative ; hence the motion is unstable,
unless w=v, and ¢ < p.

When w and v are unequal, the common surface of separation
is a surface of discontinuity which has the properties of a vortex
sheet, and the preceding investigation confirms Sir W. Thomson’s
statement that discontinuous motion is unstable.

289. Kirchhoff* has shown that it is possible for a vortex
whose cross section is an invariable ellipse, and whose vorticity at
every point is constant, to rotate in a state of steady motion in an
infinite liquid, provided a certain relation exists between the
vorticity and the angular velocity of the axes of the cross section.

The current function is evidently equal to the potential of an
elliptic cylinder of density {/2w. Let a and b be the semi-axes of
the cross section, and let the value of 4~ inside the vortex be

V' =D -t (4s+ By’)/(A + B).
Let #=ccoshncos £ y=csinhysin £, where ¢=(a*— b’)‘, and
let =B at the surface ; the value of y» becomes
¥ =D — ¢ (A cosh® 9 cos’§ + Bsinh’ n sin’€)/(4 + B).
Algso let the value of 4 outside the vortex be
Y =A'e"? cos 2§ + Dn/B.
When 5 =8, we must have
Y — 4" =const., dyr/dn = dy'/dn.
Therefore A’e=% =— 3¢’ (A cosh’8 — Bsinh’B)/(4 + B)
and A’e=% = }¢c* (A — B) sinh B cosh B/(4 + B).
¢ (4a®-Bb') ¢*(A— B)ab

’ W=\ T3\
Whence A’ (a—bd) 3(A+B) 3 AT B)
Therefore Aa = Bb and

¥ =D -t (ba* + ay?)/(a + ).
1 Vorles. ilber Math. Phy. p. 261, see also Hill, Phil. Trans. 1884, p. 363.
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Let » be the angular velocity of the axes; u, v the velocities
of the liquid parallel to them, then
& —yw=u=dy’'[dy = —2aly/(a +b),
¥+ 2o =v =—d{’/dx=2b%z/(a + D).
The boundary condition is
dF dF
o PR
where F=(z/a)'+ (y/b)'—1=0. Whence
(v-ata)at (s 5o
therefore » = 2ab¢/(a + b).
We therefore obtain

=0,

' & =—awy/b, y=>bwa/a,
the integrals of which are
z=Lacos (ot +a), y=Lbsin(wt+a),

"where L and a are the constants of integration. Whence the
path of every particle relative to the boundary, is a similar ellipse.

290. We have shown that the effect of a cylindrical vortex
column of small cross section is to produce at every point P
external to it, a velocity whose magnitude is equal to m/r and
whose direction is perpendicular to that of », where » is the
distance of P from vortex. If therefore more than one vortex
exists in the liquid, the effect of any one of the vortices upon the
others will be to produce a motion of translation combined with a
deformation of their cross sections. The mathematical difficulties
of solving this problem when the initial distribution of the vortices
and the initial forms of their cross sections are given, are very
great; and it seems impossible in the present state of analysis to
do more than obtain an approximate solution in certain cases. We
shall now show that when there are two rectilinear vortices in a
liquid, the linear dimensions of whose cross sections are small in
comparison with the shortest distance between them, the cross
sections will remain approximately circular'; from which it is
inferred that a similar result holds good in the case of any number
of vortices.

1 J. J. Thomson, Motion of Vortex Rings, p. 4.
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Hence it follows that if any number of vortices of small cross
sections are moving in the liquid, and the vortices never get very
close to one another, we may neglect the effects produced by the
deformations of their cross sections, which may therefore be
regarded as approximately circular.

291. Let A and B be the centres of the two vortices at time ¢;
e the angle which the line joining their centres makes with some
line fixed in space; also let (7, €) be the coordinates of any point
referred to the centre of 4, and Az as mmal line, and let ¢ be the
-vorticity of A.

P

Let the equation of the cross section of 4 be
r=a+ 3 (a,cosnd + B, sinnb)............. (23),
and let the values of the current functions outside and inside 4 be
Y=C—a'logr+2(4,cosnd + B, sin nf) (afr)",
and ¥, =C,—}&* +3(C, cosnf + D, sin n6) (r/a)".
Since we suppose that a, 8, 4, B, C, D are all small quantities,
whose squares and products are to be neglected, it follows that the

condition that the values of 4 and ‘I’: should differ by a constant
quantity at the surface of the vortex is that

A,=C, B,=D,.

Also since we assume that there is no shppmg at the surface of
4, the values of dvr/dr and d\[rl/dr must be equal at the surface;
this condition gives

—aca/” B —acﬁ /n:
and therefore the value of y is
¥ =C-ta'logr + al= (a, cos nb + B, sin nb) a™/nr".
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Let us now denote corresponding quantities which refer to the
other vortex B by accented letters, and we have
W =C =¢b'logr + bt = (a, cosnb + 8, sin nb) b*/nr'™,
where b is the mean radius of the section of B.

If R, ® be the velocities of any point on the surface of A4,
relative to its centre, the boundary condition is

ar +B RdF + 8 |dr

dt " rdr v df

where the value of F is given by (23); whence
7.2
@, cosnd + B, sinné — {(ll d(\lr+1lr') ;‘b sin (6 — )}

=0,

T de
—n(a, sin nf— B, cos n) {_ El(_‘l’dz:ﬂ £ cos (6 e)} 0, (24).
Now —dir = - a{ 3 (a, sin nf — B, cos nb),
d /]2
also -(;—,’0— =- ¢ - logr

the portion involving the series being neglected, since it involves
terms of the order ab/c &c., which are of a higher order than the
first. Butife>r,

log ' =} log {r* + ¢ — 2rc cos (6 —€)}
=logc—r/c.cos (0 —e)—} r/c*.cos 2 (0 —¢) — &c,

therefore ‘SZ =—{¢'b* {a/c.sin (0 — €) + a’/c*.sin 2 (0 — €) + &c.}.
Also dy = - {a,
A _
and B = b {c™ cos (6 — €) + ac™ cos 2 (6 — €) + &c.},
whence (24) becomes
&, cos n6 + B, sin nf + L= (a, sin nd — B, cos né)
+ &b ac™ sin 2 (6 — €) — ng (a, sin nd — B, cos nf) = 0.
Equating the coefficients of sin 6, cos 6, we obtain
a.] = 0’ 31 = 0!

and since a,, 8, are initially zero, they will remain so during the
whole motion ; hence the centre of inertia of either vortex column
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is undisturbed. Equating the coefficients of sin 26, cos 20 we
obtain
a, + &B, = {ab’™ sin 2,
B, — ta, = — £ ab’c™ cos 2e.
Since the centre of inertia of neither vortex column is dis-
turbed, their common centre of inertia will remain at rest, and the

two vortices will revolve around it with angular velocity n, where
n=({a* + £'b*)/c*; whence e = nt, and our equations become

a, + ¢B, = ¢'ab’c™ sin 2nt,
B, — La, = — ¢'ab’™ cos 2nt,
therefore a, + Sla, = ab’c™ (2n + £) cos 2nt,
¢'ab’® (2n + &) cos 2nt
I T/
with a similar equation for 8, Let the initial values of a,,
be zero, and we obtain

whence a,= A cos (§t+8) +

é,, b’2 )(cos 2nt — cos ),
B,= p éab2 )(sm 2nt — sin £t).

Hence the cross section at any instant is an ellipse whose axes
are functions of the time, and which vibrates about the circular
form. The vibration has two periods, a long one 7/n and a short
one 27/

292. We shall pass on to consider the motion of a number of
vortices of small and approximately circular cross sections.

Since we neglect deformations of the cross sections, the current
function due to each vortex will be —m log r, and the velocity due
to it at any point P will be m/r, and will be perpendicular to the
line joining P with the vortex. Hence if two vortices of equal
strengths m exist in a liquid, each vortex will describe a circle
whose centre is the middle point of the line joining them, with
velocity m/2c, where 2¢ is the distance between them ; and there-
fore each vortex will move as if there existed a stress in the nature
of a tension between them, of magnitude m*/4c".}

To find the stream lines relative to the line joining the vortices,

1 Greenhill, “Plane Vortex Motion,” Quart. Journ. vol. xv. p. 20.
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take moving axes, in which the axis of # coincides with the above-
mentioned line ; then

Y=—14mlog {y’+(z- )} {y’ + (& +)}.
Also & — oy =u=dy/dy,
' g+ or=v=—dy/dz,
where @ =m/2¢". Let
X =V +io(@@+y)
therefore &=dy/dy,y=—dy/da.

Multiplying by g, 4 respectively, subtracting and integrating,
we obtain
x =const. = 4,

whence the equation of the relative stream lines is

fo @ +y)-dmlog{y* +(z—o)} {4 + (2 + o)’} =4

293. If two opposite vortices of strengths m and — 7m are
present in the liquid, the vortices will move perpendicularly to the
line joining them with velocity m/2c, where 2c is the distance
between them.

In this case there is evidently no flux across the plane which
bisects the line joining the vortices, and which is perpendicular to
it; we may therefore remove one of the vortices and substitute
this plane for it. Hence a vortex in a liquid which is bounded by
a fixed plane will move parallel to the plane, and the motion of
the liquid will be the same as would be caused by the original
vortex, together with another vortex of equal and opposite strength,
which is at an equal distance and on the opposite side of the
plane.

. This vortex is evidently the image of the original vortex, and
we may therefore apply the theory of images in considering the
motion of vortices in a liquid bounded by planes.

294. If there is a vortex at the point (2, y) moving in a
square corner bounded by the planes Oz, Oy, the images will consist
of two negative vortices at the points (- z, y), (#, —y), and a
positive vortex at the point (—z, —y); for if these vortices be
substituted for the planes, their combined effect will be to cause no
flux across them.
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g

Since the vortex is incapable of producing any motion of
translation upon itself, its motion will be due solely to that pro-
duced by the combined effect of its images; whence,

2

gom_ my __mz
2y 2(+y) Y@ +y)
. m me my'
V=%t @ry) . @ +y)
therefore . &/’ +y/y'=0
whence at+yt=a"
or r 8in 26 = 2a.

This is the equation of a Cotes’ Spiral, which is the curve
described by the vortices : also since

xY — gy =—}m
the vortex describes the spiral in exactly the same way as a particle
would describe it, if repelled from the origin with a force 3m*/4r".

295. The method of images may also be applied to determine
the current function due to a vortex in a liquid, which is bounded
externally or internally by a circular cylinder.

N

Let H be the vortex, a the radius of the cylinder, OH =¢; and
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let 8 be & point such that 0S = f =a"/c, then the triangles SOP
and POH are similar, therefore

SPO = OHP,
OPH = 0OSP,
also OSP + SPA = OAP= OPA
= OPH + HPA,
therefore SPA = HPA.

Let us place another vortex of equal and opposite strength
at S, then the velocity along OP due to the two vortices is

u.—.—HﬂPsinHP0+SﬂPsiu SPO.

sin HPO _sin HPO
sin SPO ~ sin OHP

=0H/a
= HP/SP,
hence u = 0 and there is no flux across the cylinder.

But

Hence the image of a vortex inside a cylinder, is another vortex of
equal and opposite strength situated on the line joining the vortex
with the centre of the cylinder, and at a distance a*/c from the
centre, and the vortex and its image will describe circles about the
centre with a velocity

m/[SH = mc/(a’ — c").

The velocities of the vortex and its image are equal, but their
angular velocities about the axis of the cylinder will be different;
hence the motion of the liquid inside the cylinder and the motion of
the liquid outside the cylinder are independent, and the vortex and
its image will not remain on the same radial plane in the sub-
sequent motion. Hence the motions of the liquid inside and
-outside the cylinder do not correspond, as is the case with plane
boundaries, except at the instant when the vortex and its image
are on the same radial plane.

The current function of the liquid at a point (r, 8) within the
cylinder is
¥ =—mlog SP/HP

= — ymlog Tt 8 = 2rccosf
g'r'+f’— 2rfcos 0°
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296. The current function due to a vortex situated between
two parallel planes, can be obtained by finding the current function
due to the two infinite trails of images, exactly in the same manner
as the velocity potential due to a source under the same circum-
stances, was found in § 57.

Let the origin be midway between the two planes, and the axis
of 2 perpendicular to them, then as in § 57,

Vy=fle-2, y-y)—flz+a' +20, y-y)+C
where
f(@y)==mlog I {(z + 4ni)* + y'}.
Now if we omit constant terms, we have shown that
f(z,y) =— mlog (cosh my/2a — cos -n-.i/2a,),
therefore

Y= 1}”“ log cosh 7 (y —y')/2a — cos 7 (z — «')/2a

cosh 7 (y —y)/2a + cosm (z+ ')/2a

297. Let us now transform the preceding expression by put-
ting (z + w)a= (=, + /!, (&' + ) o=@, + ey )/ct.

The portions of the lines #= +a which lie on the positive
side of the axis of #, evidently become transformed into a parabola,
and the portion of space lying on the positive side of the axis of ,
which is bounded by these lines and the portion of the axis of «
which is intercepted between them, becomes transformed into the
space inside the parabola ; whilst the portion of space bounded by
these lines which lies on the negative side of the axis of  altogether
disappears. Also the portion of the axis of # which is intercepted
between the lines z = + a, transforms into a double line joining the
focus of the parabola with its vertex. Now if we were to transform
the preceding expressions for ¥ as above mentioned, it would be
found that the velocity at points on theline joining the focus of the
parabola with its vertex would be discontinuous; but if we place
another vortex of equal strength at the point —a’, — %', and add
the results, the velocity in the transformed expression will be
continuous along this line. We thus obtain the current function
due to a vortex in the parabolic cylinder 2¢ =7 (1 — cos 6).

In order to find the path described by the vortex, we must
subtract — 3m log {(z — 2')'+ (y — ¥)"} and then put =2,y =y’;
we thus obtain

B. II 4
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_ wt cosh my/a — cos ma/a
¥ = — ymlog i 4m log (1 + cosh my/a) (1 + cos 7z/a)

= — }m log (sec’ mz/2a — sech® wy/2a)

neglecting constant terms.  Transforming this 'expression we
obtain

€H/m _ gect (§r (r/c)t cos 36} — sech? {3 (r/c)! sin 36},

which is the equation of the path of a vortex in a parabolic
cylinder.

298. Professor Greenhill ! has shown that the equation of the
path of a vortex-in a rectangular prism, the origin being at a
corner, is

ctn® (Kz/a) + ctn® (K'y/b) = e~ 2™ — 1,

where 2a, 2b are the sides of the rectangular section; K/a = K'/b,
and the functions of z are to mod. &, whilst those of y are to mod. ¥'.
He has also solved the same problem when the boundaries are two
arcs of concentric circles and two radii inclined at an angle m/n.

Coates * has shown how Greenhill’s expression for the current
function due to a vortex situated in a rectangle may be transformed,
8o as to give the current function due to a vortex in an elliptic
cylinder.

299. We shall nm'w find the current function due to a vortex
outside an elliptic cylinder.

The method of images is not applicable to problems in which
the boundary is elliptic, and we shall therefore solve the problem
by means of conjugate functions.

Let &, 5 be conjugate functions such that # + ¢y = ¢ cos (£ — ¢);
and let (£, ') be the co-ordinates of the vortex @), then if & 5 be
the coordinates of any point P of the liquid,

QP'=(z-2)+ @y -y
=fe+tuy— @+ {z—w—(-w)
=c? {cos (& — un) — cos (&' = uy)} {cos (£ + ¢n) —cos (§ + u7)}]
=¢* {cosh (n' +7) — cos (£ + £)} {cosh (7" —n) — cos (£ — £)}.

1 Quart. Journ. vol. xv. p. 25. 3 JIbid. xvi. p. 81.
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Now
log {cosh (7’ + ) — cos (£ + £)}
=log } +7 +9+ log [1 - e-n’-n+t(£'+£)} + log {1 - G—ﬂ'—wﬂ(fﬂ)}
=log} +n +71— 25, n e=n0r+n) cos n (€ + £),
therefore '
log QP =log }c + 7' — 5, n™* {e=r0+) cos n ( + £)
+e =M cosn (EF—E) vovinniinnnnn. (25),

This series is always convergent when %' >7. We may
therefore put
Y=—mlogQP+W¥ .................. (26),
where
V= mET nle*0-8) (4, cos nf + B, sinnE) + m (log ye + v + n—B).
Now ¢»=0 at the surface where n=p8. Substituting these
values of Y» and log QP in (26), and putting n = B, we find
— A, =2¢"™ cos n§ cosh nB
— B, = 2¢~™ sin n§ sinh ng;
therefore
=— mE:on"{e"'("'*") cosn (£ + ) + e+ -28) cog n (£ — £)}
+m(log $c+% +9—28)
= 4m log {cosh (n + ") — cos (E+ §')}
+ 4m log {cosh (9 + 7" — 2B) —cos (§ — E)} + mlogec ...(27),
therefore

= cosh (7 —n) —cos (¢ — §)
1#—-:}mlogcosh(n,1"22/3)_008(&,_5) ...... (28).

To find the curve described by the vortex we must put 9 =17’,
E=¢ in (27), whence
¥ = 3m log ¢* {cosh 29 — cos 2&} cosh 2 (n — B)
therefore the equation of the path is
(cosh 29 — cos 2§) cosh 2 (n — B) = const.

For further information respecting the images of vortices, and
also for other cases of vortex motion in and about elliptic cylinders,
the reader is referred to the authorities cited below®.

1 Coates, ‘ Vortex motion in and about elliptic cylinders,” Quart. Jour. vol. xv.
p. 856; vol. xv1. p. 81." Hicks, ““On functional images in ellipses,” Quart. Jour.
vol. xvi. p. 327,
4—2
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On the Method of Inversion.

300. We shall now explain a method by means of which we
may derive from any hydrodynamical problem in plane vortex
motion of which we know the solution, any number of other prob-
lems with their solutions.

If P be any point on a plane curve S, and O be any fixed point
in the plane of S, and if we take another point P’ such that
OP. OP' =a® where a is any constant, the locus of P’ is another
curve, which is called the inverse of S with respect to O.

301. Let ¥ be the current function due to a rectilinear vortex
of strength 7rm situated at any point outside a cylinder whose cross
section is .S; then if R is the distance of any point from the
vortex, we may put :

Y=-mlogR+W¥..................... (29).

At the surface S, 4 is a constant which may be taken to be
zero, also ¥ and its first derivatives must be finite and continuous
at all points of the liquid, and the derivatives must vanish at infinity.
Hence V¥ is the potential of the induced charge when the cylinder
is under the action of an electrified line which coincides with the
vortex, and which is charged with electricity of line density §m
per unit of length. Hence the induced charge on the cylinder is
equal to — 4m per unit of length.

302. Let AP be the cross section of the cylinder, A’P’ the
curve which is the inverse of AP with respect to O ; also let R be
the electrified wire, which we shall suppose outside 4P, ¥ the
potential of the electric field at @, and o the surface density of
AP, per unit of length.

R

A

Invert the system with respect to O, and let the accented letters
refer to the inverse system.
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Then
¥ =—2fclog PQds —mlog RQ............... (30).

Also if ¥ be the potential at @ due to a charge m at R’,

together with a surface density ¢’ upon A'P
V' =—2[c"log P’Qds —mlog R Q.
Now
PQ_09 RY_0¢ 4 d8 _ds
PQ OP RQ OR’ OP  OFP"

Hence if we take ¢’ OP' = 0P, so that o’ds’ = ads, we obtain

¥ =—2fc (log PQ —log OP) ds — log 0Q'[ads
—m (log RQ +log 0Q —1log OR)...... (31).

But 2fods=-m

and — 2 [ o log OPds = — potential of R at O
=m log OR
by (30). Substituting in (31) we obtain
'=—2 [olog PQds —m log BQ
=

Now 4 is zero at all points within AP, therefore ' is zero at
all points without A'FP’; hence 4 is the potential of the electric
field, when the inverse cylinder is under the action of an electrified

line situated at a point-R’ within the inverse cylinder, which is the
inverse point of R.

If B is inside AP, R’ will be outside 4’'P’, and the same results
hold good mutatis mutandis.

Hence if we know the current function due to any number of
rectilinear vortices which are situated on one side of a cylinder whose
cross section is a closed or infinite curve, the method of inversion
enables us to obtain the solution for a cylinder, whose cross section

is the inverse curve with respect to any point in the plane of the cross
section.

303. We can now prove the following proposition.
Let &, n be conjugate functions of =, y such that
E+u=flz+w)d;

and let E, n, be conjugate functions of =, y, such that
E + o =fld'fc(x,— y,)} ; also let F (€n) be the current function
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* of a liquid bounded externally or internally by the cylinder n =S,
due to a vortex- at any point P of the liquid. Then F (£, 9,) will
be the current function of a liquid bounded internally or externally
by the inverse cylinder n, = B, due to a vortex situated at a point P,
which is the inverse of P with respect to the origin.

If the vortices are replaced by électrified lines, and the cylindrical
boundaries by conductors, we have shown that if 4, Y», be the
current functions due to the two hydrodynamical systems, these
quantities will be the electric potentials of the two electro-static
systems ; hence Y= .

Let (2, y) be the rectangular and (£, 5) the curvilinear coordi-
nates of any point @ ; and let (z, y,), (£, #,) be the coordinates of
the inverse point @,. Then if a is the constant of inversion,

z= a’xl/ 1':, y= any 1/ rl”

therefore z 4y =a'/(zx, - uy,),

therefore £+, = f{a'/c (x, —y,)} = f{(z + y)/c}
=E+u,

whence E=& =m0,

Hence if ¥ =F(§ n), then ¥, =F(§,9,).

304. In § 296 we have found an expression for the current
function due to a vortex between two parallel planes, and by means
of the preceding proposition we can obtain the current function
due to a vortex in a liquid which is bounded by two circular
cylinders. Also if in the expression in § 297 for the path of a
vortex within a parabolic cylinder we write c/r for r/c, the resulting
expression will give the path of a vortex in a liquid bsunded
internally by a cylinder whose cross section is a cardioid.

The expression for the current function due to a vortex outside
.an elliptic cylinder, is the expression for a vortex within a cylinder
whose cross section is the inverse of an ellipse with respect to its
centre or focus ; but in the former case £ + 1 =sec™ (x + ty)/c, and
in the latter it equals 2 sec™ {(z + ty)/2c}!.

The expression found by Coates for the current function due to
a vortex inside an elliptic cylinder, similarly determines the current
function due to a vortex in a liquid bounded internally by a cylinder
whose cross section is the inverse of an ellipse with respect to its
centre or focus.
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EXAMPLES.

1. If the axis of a hollow vortex be the axis of z, measured
vertically downwards, the plane of 2y being the asymptotic plane
to the free surface, and if = be the atmospheric pressure : prove
that the equation of the surface at which the pressure is = + gpa is

@+y) (2 —a) =2,
where c is a constant.

2. Three rectilinear vortices of equal strengths form the edges
of an equilateral triangular prism. Prove that they will always
form the three edges of an equal prism.

3. The space between two infinite parallel planes distant ¢
from each other is filled with water. Half way between the planes is
placed a rectilinear vortex. Prove that the path of any particle
of water is given by the equation

. cosh 7y/c = A cos wz/c,
the axis of # being perpendicular to the planes.
Prove also that the velocity potential is

m tan™ (sinh my/c cosec 7z/c).

4. An infinite plane vortex sheet in which the rotation is
everywhere the same in magnitude and direction exists in an
infinite mass of liquid ; prove that the resultant velocity at any
point (z, y, 2) is

q [© (7 ady'd?
- 25[ —J —ele+ G-y + =Y
where yz is the plane of the vortex sheet, the axis of z is parallel
to the axis of molecular rotation, and ¢ is the product of the section
by the angular velocity for each line.

Evaluate this integral, and explain the result.

5. Ifnrectilinear vortex filaments of equal strengths, be initially
at the angles of a prism whose base is a regular polygon of » sides,
show that they will always be so situated, and that each filament
will describe the circumscribed cylinder with velocity & (» — 1)/2a
where k& is the velocity due to each vortex at unit distance and a is
the radius of the cylinder. Show also that the equation of the
relative stream lines referred to the radius through a vortex as
initial line is 7 — 2a™" cos nf — b*" = 0.
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6. The space on one side of the concave branch of a rectangular
hyperbolic cylinder is filled with liquid, and a rectilinear vortex
exists in the liquid; prove that it moves in a cylinder having the
same asymptotic planes as the boundary.

7. The motion of a liquid in two dimensions is such that the

vorticity £ is constant ; prove that the general functional equation

of the stream lines is

¢y +w)+x@y—w) - +y)=c
Prove that if the space between one branch of the hyperbola
a* — 3y* = a" and the tangent to its vertex be filled with liquid, it
will be possible for the liquid to move steadily with constant vor-
ticity, and find the form of the stream lines.

8. A mass of liquid whose outer boundary is an infinitely long
cylinder of radius b, is in a state of cyclic irrotational motion and is
under the action of a uniform pressure II over its external surface.
Prove that there must be a concentric cylindrical hollow whose
radius a is determined by the equation

87°a’b’Il = M«?,
where M is the mass of unit length of the liquid, and « is the
circulation.

If the cylinder receive a small symmetrical displacement,
prove that the time of a small oscillation is
log b/a
b —a*’

2 oty
K

9. A fixed cylinder of radius @ is surrounded by incompressible
homogeneous fluid extending to infinity. Symmetrically arranged
round it as generators on acylinder of radius ¢ (> a) coaxial with the
given one, are n rectilinear vortex filaments each of strength m.
Show that the filaments will remain on this cylinder throughout
the motion, and will revolve round its axis with angular velocity

m  (n+1)c"+(n—1)a™

2wct * ¢ —a™ ’
and that the velocity of any point P of the fluid is
mnr"™! " =B

m  (r'™—2¢"r" cos nf + ™) (r** — 2b™" cos nf + b™)’
where a’=bc, r is the distance of P from the axis, and € is the
angle between a plane containing P and the axis, and a plane con-
taining Pand the instantaneous position of any one of the filaments.
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10. Four straight vortex filaments with alternately positive
and negative rotations are placed symmetrically within a cylinder
filled with liquid ; prove that if the motion is steady the distance
of each filament from the axis of the cylinder is nearly three-
fifths of the radius of the latter.

11. Prove that three infinitely long straight cylindrical vortices
of equal strengths will be in stable steady motion, when situated at
the vertices of an equilateral triangle whose sides are large com-
pared with the radii of the sections of the vortices; and that if they
are slightly displaced, prove that the time of a small oscillation
is the same as that of the time of revolution of the system in its
undisturbed state.

12. A straight cylindrical vortex column of uniform vorticity
¢, is surrounded by an infinite quantity of liquid moving irrota-
tionally which is at rest at infinity ; prove that the difference be-
tween the kinetic energy included between two planes at right
angles to the axis of the cylinder and separated by unit distance,
when the cross section is an ellipse, and when it is a circle of equal
area 4 is ’

pr=1 A% log (a + b)/2J/ ab,

where p is the density of the liquid, and @ and b are the semiaxes
of the ellipse.

13. Examine the stability of Kirchhoff’s elliptic vortex, when
the cross section of the vortex column is displaced into a curve
slightly different from an ellipse.

14. Prove or verify that the current function due to a station-
ary vortex situated at the centre of an elliptic cylinder, is

¥ =—4mlog4c’snusn (u— K)sovsn (v — K),
where E+m=u E—mm=w.
Prove also that the velocity potential is

K sn (2K&/m) so (K'n/B)

oo (2KEm)
where 8 = §7K'/K is the value of 7 at the cylindrical boundary ;
and the functions of £ are to mod. %, and those of % to mod. %'.

¢ =mtan™
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15. A quantity of liquid whose vorticity is uniform and equal to
¢, and whose external surface is a circular cylinder, surrounds a con-
centric cylinder of radius @. The external surface is subjected toa
constant pressure II. Prove that if the inner cylinder be removed,
the velocity of the internal surface when its radius is a, is equal to

1 /(a"—a") (& —211/p)
a loga*/(a*+¢")

where mpc® is the mass of the liquid per unit of length.

16. If a vortex is moving in a liquid bounded by a fixed
plane, prove that a stream line can never coincide with a line of
constant pressure.

17. If a pair of equal and opposite vortices are situated inside
or outside a circular cylinder of radius a, prove that the equation
of the curve described by each vortex is,

(r* — &) (r* sin® 6 — b*) = 4a’d*r* sin’ 6,

where b is a constant.



CHAPTER XIV.
CIRCULAR VORTICES.

305. A CIRCULAR vortex ring may be supposed to be made
up of a large number of indefinitely thin circular vortex filaments,
every element of which is rotating with angular velocity w about
the tangent to the circle of which the element forms a part.

We have shown in Chapter IV. that the velocity due to a fine
vortex filament, is proportional to the magnetic force exerted by
an electric current, which flows along a fine wire which coincides
with the vortex; and it has been shown by Maxwell’, that if
electric currents flow round an anchor ring of small cross section,
the effect is the same as if the currents were condensed into a
single one flowing along the central line of the ring. If therefore
the cross section of the ring is small in comparison with its
aperture, the effect of the ring upon the irrotationally moving
liquid by which it is surrounded, will be approximately the same
as that of a fine vortex filament of equal strength, which coincides
with the central line of the core. Hence rings of small cross
section may be approximately regarded as vortex filaments, and
we may disregard the effects which are due to any deformation
of the form of the cross section, or to anything which takes place
within the substance of the ring. We shall thereby greatly sim-
plify the analysis; but when we wish to ascertain what goes on
inside the ring, it will be necessary to employ toroidal functions,
and the investigation becomes much more complicated.

1 Electricity and Magnetism, 2nd edition, vol. 11. § 683.
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306. Let us in the first place confine our attention to a single
circular vortex of small cross section in an infinite liquid. Itis
clear that the motion is symmetrical with respect to a line passing
through the centre of the ring and perpendicular to its plane,
which we shall choose as the axis of z. Hence by § 38 (28), if @
be the molecular rotation, Stokes’ current function satisfies the

equation
'y’ d"\]r 1 d\]r
i T de "= d

at all points in the interior of the ring. Outside the ring the
current function satisfies the equation

+2ww 0,

Putting ¢» = y= these equations become
ox oy  ldx X

d’+dw'+wd—_‘;"+2w=0 ............ 1)
inside ; and

dx dx  ldy x_

dz,+dw +2 KXo (2)
outside.

These equations show that  cos 6 is the potential of a distri-
bution of matter of density  cos@. /2w, which occupies the same
portion of space as the vortex ring.

On account of the smallness of the cross section, o may be
treated as approximately constant, and x cos @ will be the po-
tential of a fine circular wire whose density is w cos 6. /2, 6 being
measured from some fixed point on the ring.

307. To find this potential, let O be the centre of the vortex
ring, and let the axis of z be perpendicular to the plane of the

paper; let A be the fixed point on the ring from which 6 is
measured, and let P be any point whose coordinates are 2, w, 0;
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also let @ be any point on the central line of the vortex whose
coordinates are 2, a, 8’ ; then if o be the cross section
awg [r+0 cos &' d&

2 Jo  {(z—2)+ "+ d" —2wa cos (¢ — 0)}* .
Putting ¢ — 0 = ¢, we obtain
ocwa (2 (cos @ cos € — sin 6 sin €) de

2m fo {(z=7)+w"+a*— 2wa cos G}i'

x cos 0 =

x cos =

The second integral vanishes, whence

1]r=xw=dwa'f'{ cos e de (3)

...(8),
T Je{(z—-2)+o"+a' — 2wa cos cs}é

which determines the value of 4 at any point outside the vortex.

308. We can now determine the motion of the vortex.
Putting

= dwa
(-2)+(@+a)’ 2=
(3) becomes
o = 2cos'n—1
¥ =con ' k' (wa)} f (—‘——1 1 cos ")}d
=cor™ (wa)l 2(F' - Bk -KF} ......... (4).
Putting

U=2(F -E)|k —k'F, m=ow,
where m is the strength of the vortex, we obtain
¥ =m (wa)! U/
At the surface of the vortex ring, z and = are very nearly

equal to 2’ and a respectively, hence ¥ is very nearly equal to
unity ; whence if L = log 4/k, we have approximately'

=L+ (L-1),
E =1+, (L-}),
therefore U=L-2+8¢(L-1).
aowe g e v a):
__ldy__m [adU
w dz TN w dz

1 Cayley, EWiptic Functions, p. 54.
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z—-2)+(w—a)
(z=-2)+(=w+a)”’

whence if ¢ be the radius of the cross section of the ring, we have
approximately at the surface of the ring

e dk _2a(w—a)—¢ dk_z-2

Now k=

2a’ dw 4a’e ' dz” 2ae
T s
=-2, %0y
Therefore u= 1—; {2?“' - 3—9 ( - g)}

When z=2, =0, bence the radius of the ring remains in-
variable.
Again w=——

™

m (2a 3e 20 (w —a) —

{_e—_ﬁ( _3)} 4a’e 21ra(L 2)
In order to obtain the velocity of translation of the ring we

must put @ = a, and we obtain

m

which shows that the ring moves forward in the direction of the
cyclic motion through its aperture with constant velocity.

By § 61 every element of the vortex produces a velocity at the
centre of the ring which is equal to mds/2ma®; hence the velocity
at the centre is equal to m/a = me'w/a.

Hence an isolated circular vortex in an infinite liquid moves
without sensible change of size in a direction which is perpendicu-
lar to its plane, with a constant velocity, which is small compared
with that of the liquid in the immediate neighbourhood of its
central line, but large compared with the velocity of the liquid at
the centre of the ring.

309. Let us now consider the motion of two parallel circular
vortices whose centres lie on the axis of z. If the directions of
molecular rotation are the same in both, the effect of the hinder-
most vortex on the one in advance, will be to increase the radius
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and retard the velocity of the latter; whilst the effect of the fore-
most vortex upon the one in the rear, will be to diminish the
radius and increase the velocity of the latter. Hence the hinder-
most ring will overtake and shoot through the foremost; after
which the circumstances will be reversed, and the one which is
now in the rear will overtake and shoot through the one in
advance.

310. If the directions of rotation are in opposite directions
the rings will either recede from, or advance towards one
another. If the former is the case the radii of each ring will
diminish, whilst the converse will be the case if the rings are
advancing towards one another. In the latter case the velocity
of approach continually diminishes whilst the radii of the rings
increase; also if the vortices are of equal size and strength,
there will be no flux across a fixed plane parallel to them and
bisecting the distance between them, and we may therefore
remove one of the vortices and substitute for it a rigid plane
boundary. Hence the motion of a vortex which is moving in a
liquid towards or from a fixed rigid plane, is obtained by
substituting for the plane a second vortex of equal size and
opposite strength, which is the image of the first with respect
to the plane.

311. We shall now determine the image of a circular vortex
in a sphere’.

We shall in the first place show that every element ds of a
vortex ring within the sphere, together with a corresponding

1 Lewis, Quart. Journ. vol. xv1. p. 338.



64 CIRCULAR VORTICES.

element ds’ without the sphere, which occupies the position of
* the electrical image of ds, will produce over the surface of the
sphere a velocity which is everywhere tangential, provided certain
other conditions are satisfied.

Let O be the centre of the sphere, and let BB, CC’ be the two
elements, m, m’ their strengths, and let the plane in which they
lie be the plane of zy. Since OB.O0OC = 0B . 0C, the angle
ACB = AB'C = ABC ultimately, whence AC = AB.

Let OC be the axis of @, BP=r, CP=7¢, OB=f, 0C=f,
ABC =06, also let B and y be the angles which the planes APB
and A PC respectively make with the plane zy.

Let (#, y, 2) be the coordinates of P, and u, v, w the
velocities at P; then by § 61 if the two vortex elements at B and
C are parts of complete filaments

27ru = mr~* dssin B sin Bsin @ + m'r" ds’ sin C'sin ¢ sin 6,
27y = — mr~* ds sin B sin B cos @ + m'r'* ds' sin C sin y cos 6,
2mrw = — mr* dssin B cos 8+ m'r’* ds'sin C cos y.

But
z=rsin BsinB8=7"sinCsinv,

(#—f)sin O—ycosﬁ-—-:zcotﬁ,
(f —«)sin@ — y cos 6 =z cot vy.
Therefore ‘

2mu = (mr*ds +m'r"*ds’)zsin 6,
2my=(—mr®ds+m'r*ds’) z cos b,
2mw = ( — mr™® dscot B + m'r' " ds’ cot y) 2.
In order that there may be no flux across the sphere, we
must have at the surface

ux + vy + wz = 0.
Therefore

mr™ ds (z sin 6 — y cos 8 —z-cotB)
+m'r?ds’ (xsin 6+ ycosf + zcoty) =0,
whence mfr™ ds= —m/f'r'~ ds’.
But ds/f=ds'[f’; and (r/r')*=f/f =(f/a)’, where a is the
radius of the sphere; therefore
myf=—mif.



. VELOCITY POTENTIAL OF A CIRCULAR VORTEX. 65

Hence the molecular rotations of the two vortex elements must
be in opposite directions, and their strengths must vary inversely
as the square roots of the distances of the two elements from the
centre of the sphere. Now along each ring m is constant, also
since f/f =(f/a)’, f must be constant, and therefore each vortex
ring must lie on a sphere concentric with the sphere which forms
the boundary of the liquid.

312. We have shown in § 62 that the velocity potential at
any point due to a fine vortex is equal to — mQ/2m, where () is
the solid angle subtended by the vortex at the point. When the
vortex is circular, this solid angle may be easily expressed in a
series of spherical harmonics’, and we may thus obtain the
expressions for the component velocities in the form of a series.
This method of proceeding is especially useful, when we desire to
obtain the effect of a vortex at a point very distant from it, for in
this case a few terms of the series will be sufficient.

We could also apply this method to find the velocity potential
due to a vortex situated outside a fixed sphere, but the preceding
investigation shows that the series representing the image will
not be the velocity potential of a single vortex unless the original
vortex lies on a concentric sphere ; when this is not the case, the
image will consist of a hydrodynamical system of more or less
complexity, which will be dependent on the form and position of
the original vortex ring.

In considering the motion of two vortices we have supposed
that their planes are parallel, and that their centres lie on a
straight line which is perpendicular to their planes. For the
discussion of the motion of two vortex rings whose planes are not
parallel, we must refer the reader to Part I1. of Prof. J.J. Thomson’s
Motion of Vortex Rings.

1 Ferrers, Spherical Harmonics, ch. 111. Maxwell, Electricity and Magnetism,
vol. 11. ch. xIv.
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Vibrations of a Circular Vortex Ring'.

313. The vibrations to which a vortex ring may be subject,
may be divided into two clusses, vibrations which involve a deform-
ation of the surface of the ring, without any deformation of the
central line; and vibrations which involve a deformation of the
central line as well as a deformation of the surface of the ring.

A complete investigation of the stability of a vortex which is
in a state of steady motion or kinetic equilibrium, would involve
the consideration of the problem in its most general form. When
however the cross section of the ring is small in comparison with
its aperture, we may without sensible error treat these two kinds
of vibrations separately. We shall therefore in the present section
confine our attention to vibrations involving a deformation of the
central line alone, and shall neglect deformations of the surface.
In the closing portion of this Chapter, we shall suppose that the
central line retains its circular form, and investigate what may be.
called fluted vibrations, that is to say vibrations which consist of
trains of waves travelling over the surface of the ring, whose crests
are circles parallel to the central line.

314. Let a be the radius of the central line when the ring is
undisturbed, 3 its distance from the origin; and let «/, ¥/, 2 be '
rectangular, and @, ¥, ' cylindrical coordinates of any point on’
the central line during the disturbed motion; also let =, y, 3+ ¢
be rectangular, and @, 0, 34 ¢ be cylindrical coordinates of any
point of space. Let '

@' =a+a,cosny, 2 =349, C8NY..uuuennnnn. (6),

where in the begmmng of the disturbed motion, a,, v, are small
functions of the time, whose squares and products may be neglected.
Then
‘ =wn'cos VY, ¥ == sin,.
whence
dz'/dyr = — a sin yr — a, (cos n sin ¥ + n sin nyr cos )
dy' [dyr = a cos yr + 2, (cos nyr cos Y — n 8in nyr sin Y) } )
dz’ [dr = — ny, sin nyr

1 J. J. Thomson, Phil. Trans. 1882, and Motion of Vortex Rings, Part 1.
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Let r be the distance between the points (z, ¥, 3+ ¢) and

(«, ¥, 2'), also let &'= ¢ — 1, cos ny, then
' ="+ " + " ~ 2za cos (Y — 0).

Now 7™ can evidently be expanded in a series of cosines of

multiples of 4» — 6, we may therefore put
r?*=C,+C,cos (y—0) +...... C, cosm(y—6),
where the ('s are functions of =, =, {. Since ) enters into @/, {’
in the forms a,cosny, v, cosny, the terms in the C’s which
involve Y will be small quantities, whence if
{o'+a'+ C—2macos (Y — 0)) 1= A,+ A, cos (Y — 0)
‘ + s A, cosm(y—0)+...(8),

we shall have

dA dA,,
C.=4,+ d—a"‘a.cosm]r—%c—l(—r) 7, CO8 T,

In the present investigation ¢ will be a small quantity, and we
may therefore neglect the last term, we thus obtain

d4,,
C.=4,+ a2 COBMY eeerinnenrinnnns 9).

315. We must now calculate the velocity due to the vortex
during the disturbed motion.

By § 61 the velocity parallel to « of a vortex of strength m is
wmge [ 3 {e-0F- w035 v
Substituting the values of 2 — 2’ &c. in terms of 4» and neglect-
ing squares of small quantities, the term in brackets becomes
&a cos Y + nyvy, sin nyr
+ay. {(n—1)cos(n+1) ¥ — (n+ 1) cos (n — 1) ¥}.

Since every term of this expression is small, we may write 4
for C in the expression for 7™, whence remembering that

f'cosmapoosm]rd\k=0"'or ™
o
according as m is unequal or equal to n, we obtain
w=4m[{ad, cos b ,
+ Yay, {(n—1) 4, cos(n+1)0—(n+1) 4, cos(n—1) 6}

+ dnowy A, {cos(n—1) 0 —cos (n +1) 0}]............... (10).
5—2
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The velocity parallel to y is
2 ] N a3 N/
= %—:—rfo ?{(w—x)ﬁ—(z—z)w} dvy.

The term in brackets
= {a sin ¥ — nay, sin ny
+ $ay, {(n—1)sin (n + 1)y + (n + 1) sin (n — 1) ¥},
whence
v=4m[{ad,sin @
+day,{(n—-1) A4, 8in(n+1)0 +(n+ 1) A4, sin (n — 1) 6}
—4nwy, 4, {sin(n+1) 0 +sin (n —1) 6}]............... (11).
The velocity parallel to 2 is

wege [ So-ng-@-n @ av

The expression in brackets is equal to
a'—a (z cos Y + y sin )
+ 2aa, cos nr — yya, {(n+1) sin (n + 1) Yr + (n — 1) sin (n — 1) Y}
—3za_{(n+1)cos(n+1)y —(n—1) cos(n—1) }.
Since the first two terms are not multiplied by any small
quantity, we must not put 4 for C in the value of ™ by which
these terms are multiplied, but must employ the value of C given
by (9); whence on integration

the 1st term = yma’ (2A + (ZA
the 2nd term
=—4$md, 0w — } maza, {d‘i;‘“ cos(n+1)6+ d‘;""‘ cos (n—1) «9}

a, cos nG)

—} maya, {d‘:;' sin(n+1)0— (_Z%;__‘ sin (n — 1) 0},

and the other terms
-—-}m [2aa, A, cos nf
—dya, {(n+1) 4, sin(n+1)0+(n—1) 4, sin(n—1) 6}
—322, {(n+1)A,, cos(n+1)0—(n-1)A4,  cos (n—1)6}]
Collecting our results we obtain

n-1

w=}m [2Aoa" —awd,
+ I2A -0t %‘W’ [(n 1) A - ('n + 1) A.-u]} a, cos né
+ { ad, da (A,,+l +4 H)} aa, cos n@] ............ 12),
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316. Having obtained the values of the velocities we can now
find the values of @, ,.

If e be the radius of the cross section (which is supposed to be
very small) the equations of the surface of the ring are

w=a+a,cosnd +ecos......c........... (13),
z2=3+y,cosnf +esind......ceeeun.n.n. (14).
By § 12, if F(w, 0, ¢, t) be the equation of a surface which
always contains the same elements of fluid, -

dF dF dF dF

+R -~ +® d¢ =0,

@t e
where R is the velocity along =, and ®, @ are the angular
velocities in the directions in which these quantities increase.

Applying this to (13) we obtain
a, cosnd — R —na, O sin nf —edsin ¢ =0.
If the motion were undisturbed ® would be zero, hence in the
beginning of the disturbed motion ® must be a small quantity;

the third term is consequently of the second order and may there-
fore be neglected. We thus obtain

R=ad_ cosnf —e®sing.......ccevuneenn (15).
But
R =wucosf+vsin @
=4m[lad, + }ay {(n—-1)4,,—(n+1)4, ]} cosnd]... (16), -
by (10) and (11). In this expression {=ry, cosnf +esin ¢ ; also
the values of the 4’s must be obtained from (8) by putting
w=a +a, cos né + e cos ¢

and giving to { the above value. Let S, denote the value of 4,
at the surface of the undisturbed vortex, that is when a, =+, =0.

Then by proceeding in the same manner as in the case of equation
(9), we see that

But since each of the A’s is multiplied by a small quantity in
(16), we may put S for 4, and we thus obtain

R = §m[aS, (v, cos nd + esin ¢p)
+day, {(n-1)8,,,—(n+1)8,_}cosnf].............. (18).
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Equating coefficients of cos nf and sin ¢ in the two values of R
given by (15) and (18) we obtain

Again, the condition that (14) should be always composed of
the same elements of fluid, is

dF ., dF dF dF
+ (w—13%) d;+e¢—i?)+¢ﬁ=o’
whence
w=35+q,co8nd+ePcosd.................. (21).

Equating the right-hand side of this equation to the value of w
given by (12), we obtain

jm [2Aoa'— awd,+ {2A.a +iw[(n-1) 4,,,~(r +1)4, ]} a,cosn8

+ {a %A& —{w - (Am + AH)} az, cos n0:| =3+, cos nf
+ePcos ¢...(22).

Since the last two terms on the left-hand side are multiplied

by a,, we may put w=a, 4,=S,; but in the first two terms

which are not multiplied by a small quantity, we must substitute

for A, its value from (17), and for = its value from (13). Making
these substitutions and equating coefficients we obtain

5 = 3G (28, = 8))eeeeeeeerererereeserereens et (23),
R P OO (24)
7, = fmaz, [28. — 8+ {(n-1)8,,~(n+1)8,]

+adi{s ~3(8 ,,,+S,_,)}+ad (28, - S)J (25).

317. We must now calculate the S's. From (8) it follows
that if we put - .

w=a+ecosp, {=esin¢, 2wag=w"+a"'+’,
then
1 cos nfd0 dé

" 2 @2walt) o (g—cos O’ °=w(2m)'fo (q—cosO)t

Since e is very small, g is nearly equal to unity, and we there-
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fore require the values of the precedmg integrals, when ¢ is nearly
equal to unity. Let, o )
1 [* cosnfdf b, ' .i,fb cos nfdé

== —m—, by==| ——,.
o (g—cos )t

o (@—cosO)F..

From § 277, it appears that b, is a zonal toroidal function of
the second kind; also since ¢, = — 2db,/dg, it follows from § 273
(55) and § 275 that

: 2n+1

6, = 1 (40— 0 WO (26),
and that - q, -
(l_q,)_?i;‘_%dq + (n* —} ......... (7).

In order to find the value of b, when qis nearly equal to unity,
assume

= 9 -
Substituting in (27) we obtain

<1_—q')fq"? 2P+ @-He=o,
¢+(1 q’)d‘p 2qz +(' -3 ¥ =0.

In these equations put # =q — 1, and they become

a:(2+m)d$+2(l+z) 9 _ =3 b=0...... (28),

W8 d"’ — 1) ¥ =0...(20).

In order to solve (28), assume ¢ = Ea,.a:", and we obtain
=% -m(m+1)
Qs = 2 (m + 1)- @y

whence .
p=afl+m-py+ ("—"fﬁrﬁ(‘;)

+EDEDED @, L o0,

=a,P (say).
Putting ¥ = 22 2™ we obtain from (29)

_nw=}—-m(m+1) -2
X1 = 2(m+1) a,, = m+ 1 Corr
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whence
\p=a°P—2a°El ( +3+... 1) (n*—1) (n*—9)...
o = (= 3 g - (81),
and therefore b,=a,P log 16 (7_—'_1—13 F P (32).
By § 273 (56)
4nqb” = (2'"’ -1 bu—l +(2n + 1) bu-l-l'

Hence when g is nearly equal to unity, this equation may be
written,

4nb =(2n—1)b

n-1

+(2n+1)b,,,,
the solution of which is
b,=C+C (1 +3+... %L_)

1

=CHCL(M)eereeiiinniiiiiiiiiiiiicciiiie, (33).

Therefore b, =C+C,
2b,=C.
Therefore b, =2b, + (b, — 2b,) f (R)..vveveeenrrnvnnnnn.... (34).
1 dé
Now . 2b = 7—"[2:-_\/ q—cos 6)
2 v do N 2

=""’~/(Q+1) o (1— lc'cos’¢)*, k =9+1

7r~/(q+1)f 1- k’sm P
TN(g+1) B
=— 1_2_ log - 4=1
516 (g +1)
approximately. Also

1 jz' cosede

(g — cos O)F
-- V(q+1)fo (1-#*sin’ §)} d + 2b,g
=—4/2/7 + 2b,
approximately ; whence (84) becomes,
_ V2 2 q-1 4 ~/2
b,= log 6@+~ f@m)......... (85).
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Since # is very small we may put # =0 in the expressions for
¢ (z) and ¥ (), and (32) becomes,

b, = a, log ltiq(;—-il-l)+ Bgoeensessensesesons (36).
Comparing (85) and (36) we obtain
a,=— N2/,
2, = — 4 &/2f (n)/m.

If o, denote the sum of the reciprocals of the first n natural

numbers,
f (n) = 0',' - '%0'“.
But it is shown in Boole’s Finite Differences, 2nd edition, p. 93
that o, =577215 +logn + 27'n7 = 127'07%,
whence
f(n) =-288607 + log 2n — } logn+ (48)'n...... 37),
and we obtain from (32)
b, =277 (L +4 (n* — D} {log 16 2 + &)/ — 47 (n))
+ /277 z (n* - })...(38),
and therefore from (26)
¢, =277 [2/z— (n*—1) {log 16 (2 + z)/z — 4f (n)} — n*— §]...(39).
Hence we finally obtain
8,=[2/o—(n"~1)(10g 16 2+2)/a—4f (n)} ~n*~4]/2m (wa)...(40),
where z=q—1={(w—a)+{}/2wa.

318. We can now complete the solution of the equations of
§316. At the surface of the ring w—a=ecos¢, {=esing,

whence z=¢'/2a%, (24 x)/x=4d’/e",
and therefore
S, = [4a%/é* — (n" — }) {log 64 a*/e*— 4f (w)} — n* — §] /2,

and

28, = (4a’/é’ + } log 8afe — §)/2mwa’.

Substituting the values of S, and S, in (23) and (24) we obtain

3=m (log 8a/e—1)/27a..........c..ccuuunn.... (41),
® = —m (4a’/e* — § log 8a/e + §)/4ma®

or since m = e,

=—w+§owe'a™ (log8aje—3)..couuuun...n. (42).
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Equation (41) gives the velocity of translation of the ring, and
agrees with the expression previously obtained in (5). The angu-
lar velocity of the liquid at the surface of the ring is given by (42).

319. In order to obtain the equations for determining the
small oscillations, we must substitute the value of S, in (19) and
(25). Putting

L =m {log 8a/e — 2f (n) — }}/2ma’............ (43),
we shall after reduction obtain ’

a,=—n'Ley, -y“-(n—l)[;z ............... (44),
the solution of which is .

a,=A cos {Lny/(n"—1)t + 8},

v, =An™ y/(n* — 1) sin {Ln y/(n'— 1) t + B}.

These equations show that a circular vortex ring is stable for
all displacements of its central line, and that the period of oscilla- -
tion is 27/Ln »/(n*—1).

Now e is a small quantity and therefore if n is not very large,

log 8a/e will be large compared with 2/ (n)+ 4, and the period of
oscillation is approximately equal to

47'a’/mn y/(n* — 1) log 8a/e.

But if n is so large that ne is comparable with a, we must

substitute for f(n) its value from (37), and we obtain
L =m (log 2a/ne — 10772)/2ma’.

Since n is large, we may write n* for n* — 1, hence if I=2wra/n
the period of vibration becomes :

' P (log l/me — 1:0772)" (wwe’)™.

The transverse vibrations of a rectilinear vortex have been

investigated by Sir W. Thomson', who finds that when l/e is
large, the period of oscillation is equal to

I* (log t/re — 8272)™ (rwe”)™,
which approximately agrees with the preceding expression.
If the displacement had been represented by the equations
o’ =a+a,cos ny + B, sinny, 2 =3+, cosny + 8§, sin ny,
it could have been shown in a similar manner that S, §, satisfy
the same equations as z,, 7,.

! Phil. Mag. Sep. 1880, p. 167.
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Linked Vortices.

320. The subject of linked vortices has been elaborately
discussed by Prof. J. J. Thomson in Part 11 of his Motion of
Vortex Rings, to which the reader must be referred for complete
information on the subject. In the present section we shall
confine ourselves to the discussion of the simple case of two
vortices of equal strengths.

We have shown in § 291, that when two rectilinear vortices
are situated at a distance from one another which is large
in comparison with the linear dimensions of the cross sections
of either, their cross sections will retain an approximately
circular form ; and the vortices will revolve about their common
centre of inertia with angular velocity (m + m’)/wd’, where
m, m' are the strengths of the vortices and d is the shortest
distance between them. Hence if the motion is steady the angular
velocity must be approximately constant, and therefore d must be
constant. o ‘

If we consider two linked vortices whose shortest distance is
small in comparison with the radii of their apertures, but large in
comparison with the linear dimensions of - the cross sections of
either of them, the action of one vortex upon the other so far as it
affects the form of the cross section of the other, will be approxim-
ately the same as that of two rectilinear vortices. Hence in order
that the cross sections of the two linked vortices may retain an
approxiiately circular form, we must suppose them linked in such
a manner that the above conditions are satisfied. When the
vortices are of equal strengths, this may be effected by supposing
them wound round an anchor ring, the radius of whose cross

. section is small compared with the radius of its aperture, in such a

manner that there are always portions of the two vortices at
opposite extremities of a diameter of the cross section of the
anchor ring. If we wind a piece of string » times round a curtain
ring, and tie the ends together; and then wind another piece of
string n times round the ring in the same direction as the first, so
that the shortest distance between every point on one of the strings
from the other string is a diameter of the cross section of the ring,
and tie the ends of the latter together; we shall have an exact
representation of the manner of linking.
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It is also evident that the number of windings must not exceed
a certain number which depends on the dimensions of the cross
sections of the vortices and the anchor ring, and also upon the
radius of the latter, otherwise the shortest distance might not be
the diameter of the cross section of the ring. Moreover one or
more vortices twisted round an anchor ring a great number of
times would approximate to a vortex sheet, and the motion would
be unstable.

321. We shall now consider the small oscillations of two
equal vortices wound » times round an anchor ring.

Let the equations of the two vortices when undisturbed, be
@ = a+ 4d cos 70, z =%+ 3d cosr6,
o' =a—3%dcosrd, Z=3%—%dcosrl,
and let these equations when the vortices are disturbed, be
@ = a + 3a, cos nb, z =3+ 3y, cosnd,
o' =a+ 3, cosnd, 2 =13+, cosnb.
Also let 4, S, be the quantities denoted by these letters in
§ 316, due to the action of the first vortex upon itself; and let 4°,,

&', be the values of these quantities, due to the action of the first
vortex on the second.

From (18) it follows that the velocity in the direction of the
radius due to the first vortex at a point on the second vortex,
consists of a series of terms of the type

ma [S'y, +47, {(n—-1) 8, - (n+1) S, }] cos nb...(45).

The value of S, is given by (40) in terms of z; in the present
case z is approximately equal to d’/2a’, where d is the diameter of
the cross section of the anchor ring on which the vortices lie and
which is therefore a small quantity. Also if we suppose that = is
not sufficiently large for f(n) to be comparable with log 8a/d,
it follows that if the largest terms only are retained, the above
expression for the velocity

=m (4mwa")” [(4a*/d* — § log 8a/d) v,
— {4a*/d* +2 (0" — §) log 8a/d} y,] cos nf...(46).
From (43) and (44) it follows that the velocity along the radius
vector due to the action of the second vortex upon itself
=—mn* (2ma®)" o/, cos nflog 8aje............ 47).
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Since we suppose that e is small compared with a, it follows
from (15) that the velocity of the second vortex along the radius
vector is approximately equal to d’, cosnd, whence equating these
values of the radial velocity we obtain

&, =m [(4a’/d’ — §log 8a/d — 2n* log 8a/e) 7',
— {4a*/d’ + 2 (n* — §) log 8a/d} y,]/4ma’...(48).

From (12) it follows that the portion of the velocity pa.mllel to
z of the second vortex, which is due to the first is,

w=3m[24'a’'—awd’,
+{28,ea+3a[n-1)8, ,—(n+1)8,,,]} a, cosnf]
+ $ma’ (% {§,—%(8,,,+5,.,)} a, cosné.

Now at the second vortex
24’ a*—awd’,=a'(28,—8) — 8 a2, cos nf

+a’ dii; (28,-8,)«, cosnd,

also 28, — 8, = (log 8a/d — 1)/ma’,
and d(28,—-8)/de =—§n ' a™*log 8a/d,
retaining the most important term only; whence the value of w
approximately is,
w=m(log 8a/d — 1)/2ma

—m (4ma’)” [(4a’/d’ + § log 8a/d) ',

+ {4a’/d* + 2 (n* — }) log 8a/d} a,] cos nb.

By (41) and (44) the velocity parallel to z of the second vortex

due to itself is

m (log 8a/e — 1)/2mwa + m (2wa®)™ (n* — 1) o, cosné log 8a/e.

The resultant velocity parallel to z of the second vortex is the
sum of these two expressions; but by (21) this velocity is also
equal to

5+, cosnb,

whence equating coefficients in these two expressions, we obtain
3 =m (log 64a*/de — 2)/2ma,
v . =m[2{2a*/d*+ (n* —}) log 8a/d} a,
— {4a’/d® + § log 8a/d — 2 (n* — 1) log 8a/e} o' ]/4ma’...(49).
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322, Let
L =m (4a’/d* ~ § log 8a/d — 2n log 8a/e)/4ma’,
M =m {2a%/d* + (n* — }) log 8a/d}/2mwa’,
P =m {4a’/d* + § log 8a/d — 2 (n* — 1) log 8a/e} /4mra’,
Q =m {20°/d* + (n* — }) log 8a/d}/27d’,
and we obtain from (48) and (49)
&=Ly, — My, &.=Qa—Pd,
Similarly it can be shown that
é,=Ly,— My',, 4,=Qd,— Pa,
whence )
@—d=L+M)¥.=%) Ye—t=—(P+Q)(d,—2a),
therefore
a'—a,=2A4 cos (ut +¢)
Vo= v.=—24p(L+ M) sin (ut + e)}
where
p=(L+HM) (P+Q) .
= (m/4ma’)’ {8a*/d* + (2n* — 3) log 8a/d — 2n* Iog 8a/e}
x {8a’/d" + (2n® + 1) log 8a/d — 2 (n* — 1) log 8a/e}...(51).
Again, ' ‘
d +a,=L-M) O, +7), Yut+T=—FP-Q) (v, +7.)
whence

o, +a,=2Bcos (vt +€) ]
¥+, =— 2By (L — M)"sin (vt + e’)} ......... (52),
where
v =(L— M) (P-Q)
= (m/2ma’)* (log 64a’/de)* n* (n* —1).
Therefore ‘

v=m (2ma®)n (u* — 1)} log 64a’/de............ (58)
=n@n'—1) Via

nearly if ¥ be the velocity of translation of the vortex ; we there-
fore finally obtain
d,= Acos(ut+e)+Bcos(vt+¢)
a, =— A cos (ut+€) + Bcos (vt + €)
a=—Ap(L+ M) sin(ut+¢€) — By(L—M) sin (vt +¢€) ("
v,= Ap(L+M)*sin(ut+e)—By(L—-M)™sin (vt +¢€)

.(54).
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Equations (51) and (53) show that x and v are both real, and
therefore the steady motion we have been considering is both
possible and stable; also x is much greater than v, and therefore
the motion consists of a quick vibration whose period is 2/u and
a slow vibration whose period is 27/v.

323. In the problem we have been considering, we have
-supposed the vortices wound r times round an anchor ring, and
that the equation of its projection on the plane of the ring during-
the disturbed motion is ' .

o =a + 3z, cosné.

Of the terms a,, the quantity a, is the most important, since its -
maximum value is §d; the other terms denote small sinuosities
and are very much less than a. Now (54) shows that if any of
the quantities a,... are initially zero, and the vortex suffers no
external disturbance, they will remain zero throughout the motion,
and the motion of the vortex will be given by (54), r being wntten
. for n; also if the rings are initially placed so that

a == d %d 'Yr == 7 r %d’
we see from (52) that B = D=0, and therefore the slow v1brs.t10ns

will not be excited unless the ring suffers some external disturb-
ance.

324. The preceding investigation shows that two vortices of
equal strengths linked round an anchor ring in the manner described
in § 320 are stable ; Prof. Thomson has also shown that two linked
vortices may be stable when their strengths are unequal, but the
manner of linking is not the same in the two cases.

When the vortices are of unequal strengths m, m' they must
be linked in the following manner*

“ Describe an anchor ring whose mean radius of aperture is a,
and the radius of whose transverse section is m'd/(m +m'); then
the central line of vortex core of the vortex of strength m will
always lie on the surface of this anchor ring. Describe another
anchor ring with the same circular axis, and the same radius of
aperture as the first, but with a transverse section of radius
md/(m + m’) ; then the central line of vortex core of the vortex ring,
whose strength is m’, will always lie on the surface of this anchor

1 Motion of Vortexz Rings, p. 88.
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ring ; and will be so situated with respect to the first vortex ring
that if we take a transverse section of the anchor ring, and if C be
the common centre of the two circular sections, P and @ the points
where the central lines of the vortex rings cut the plane of section,
then P, C, @ will be in one straight line and C will be between P
and Q. If we imagine the circular axis of the anchor rings to
move forward with a certain velocity V, and the circular axes of
the vortex rings to rotate round it with a certain angular velocity -
which depends upon their strengths and dimensions, we shall get a
complete representation of the motion.”

325. A similar method might be employed to investigate the
steady motion of a number of linked vortices, but if the number of
vortices exceed a certain limit the steady motion will be unstable.
For if we suppose for simplicity that the vortices are of equal
strengths, and are linked round an anchor ring, the system will
approximate to a vortex sheet if the number of vortices be large ;
and since the cross section of the anchor ring is small compared with
the radius of its aperture, such a vortex sheet may be approxim-
ately regarded as a cylindrical vortex sheet, and we have shown in
the previous chapter that such a vortex sheet is unstable. For
the purpose of investigating this question, Prof. Thomson has
examined the stability of a number of rectilinear vortices of equal
strengths arranged at equal distances round the circumference of a
circle, and he finds that the steady motion of six or any less
number of vortices is stable, but that seven vortices are unstable;
whence it is inferred that if less than seven vortices are linked
round an anchor ring so as to cut any cross section in the angular
points of a regular polygon, the system is stable, but if there are
more than six vortices the system is unstable®.

'Vo'rtem Rings of Finite Section®

326. In the preceding investigations we have regarded the
cross section of the ring as indefinitely small, and have taken no
account of what goes on inside the ring; we shall now suppose
that the cross section though small in comparison with the
aperture of the ring is finite, and we shall investigate the motion
of the rotationally moving liquid of which the ring is composed.

1 For the motion of vortices in a gas, see Chree, Mess. Math. wol. xvir. p. 105.
$ Hicks, Phil. T'rans. 1884 and 1885.
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For the sake of greater generality we shall suppose that the
liquid constituting the ring is of different density from the liquid
surrounding it, and that in the surrounding liquid there is a
circulation additional to that produced by the filaments of which
the ring is composed ; but it will be assumed that the pressure at
a distance from the ring is sufficient to prevent the formation of
a hollow, and the conditions for this will be found.

Let p be the density of the outside liquid, u its circulation ; o
the density of the liquid constituting the ring, u’ the circulation
due to it:

Outside the ring, Stokes’ current function satisfies the equatlon

oy Y _ldy_, (55).

3 T ia = dw
Inside the ring, 4~ satisfies the equation
A +d’1k 1dy'_ (56).

d? ' do® w dw

In order to obtain the solutions of these equations in a suitable
form, it will be necessary to employ the toroidal functions whose
properties have been discussed in Chapter XII., and we shall begin
by considering the steady motion of the ring.

By § 79 the vorticity at any point of the ring is proportional to
o/ ; hence by (33) of § 38 when the motion is steady the vorticity
is a function of the current function. Now before it is possible to
discuss the properties of any vortex ring it is necessary to know
its vorticity, and we shall suppose in the present investigation
that the vorticity is constant. This requires that w/= = const. =M,
whence (56) becomes

tie T w dw
We may also suppose that the ring is at rest, provided we
impress upon the whole liquid a translatory velocity equal and
opposite to the velocity ¥V of the ring; whence the proper solutions
of (55) and (57) may be respectively written,
Yv=—3Va'+ (26)F (C+ )P 2, AR, (b/k)* cosnk... (58),
and
¥ =} Ma* + (26°)F (C + o) S, BT, (k/b)* ™ cosné......(59).
If the ring contained a hollow space, it would be necessary to
B. IL 6
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include terms of the form D, R, (b/k)*** cos nf in the expression for
¥'; but as we suppose that the pressure is sufficient to prevent
the formation of a hollow, ¥ cannot contain any terms of this
form.

327. We are not at liberty to assume that the cross section of
the ring is an exact circle in steady motion ; but when the cross
section is small compared with the aperture, it can be represented
by an equation of the form

k=b(1+ 8, cos§+ B, cos2f+...... ) ST (60),

where b is a small quantity and B, is another small quantity of the
order b"; and our object will be to obtain an approximate solution
of the problem upon this assumption, which as we shall presently
see is justified by the result. We shall make the further
assumption, which is also justified by the result, that A, and B,
are each quantities of the order b"; and for a first approximation
we shall retain quantities of the first order in calculating y, which
will render it unnecessary to carry the approximation farther than
the term involving cos §; but in calculating ¥’ it will be necessary
to carry the approximation as far as cos 2§, and to include in the
coefficients of these terms quantities of the third order.

328. Putting C = cosh %, § =sinh %, ¢ = cos £, we have shown
that :
J=(C+c)/a, ==aS/(C+c)............ (61),

also by § 280 if p and g are the ‘velocities perpendicular to the
surfaces 9 and £ measured in the directions shown in the figure
of that section,

p=Jwldy/dE, q=Jwdy/dy............ (62).
Since ' is the circulation due to the ring
¥ = 2ffwdo = M[[wJ™* dndE,
= Ma® [[(C + )™ SdndE,

=-ie [* (o,

terms of the fourth order being omitted. Also since u is the
circulation outside the ring, it follows from (70) of § 281, wntmg
A5"27} for A, that

=—ma (A= Ap+ AP ). (64).
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329. We are now in a position to calculate v¥. From (61)

we obtain
wt=a'(1 -1+ K+ 2k cos ’g‘),

=a' {1 — 4k cos § + 2" (1 + 3 cos 2£) -} ... (65).
Also

(C+0) =@k} + 1+ 2cos B,
=2 (1 + 3% — (k + §&*) cos £+’ cos2E—)...(66),
in which we have retained ‘quantities of the third order in the

coefficient of cos £, as they will hereafter be required. Whence to
the first order

==} Va* (1 — 4k cos §) + (1 — k cos £) {A R, + 4, R, (b/k)cos £}(67).

The value of Y must be constant at the surface, if' therefore we
substitute for k its value from (60), the coefficient of cos £ must

vanish. Now by § 283 S
By=—§ (L-2)- (L“)} .............. (68).
R=}-#L-p |

Therefore dRy/dk= (2k) —}k (L + 1})} (69)
dRJdk = — 3 (L 1) ............... .

Therefore at the surface
Yy=—3Va'(1 -4bcos§)+ (1 —bcos§)
’ x{—3§A,(L—2)+34,8,cos £+ %4, cos E}.
Equating the coefficient of cos £ to zero, we obtain
2Va’+34,(L—-2+8,/b)+34,/b=0......... (69a),
which shows that A , i8 of the first order; therefore from (64)
A,= - ua/m e, (70),
A,=prab(L -2+ B,/b)—4Va'b............ (71).

330. The calculation of ' is more difficult, since we must
retain terms of the third order. Let Q=— u'a/4m, then by (63)
M = Q/a'V’, and the value of ¥ becomes

By = Qu*/8a* + (2b) "} (C+ ) =, BT, (k/b)" " cosnk...(72).
Now w*=a*{l+ 12" — 8 (k + 6k) cos £ + 20k® cos 2£},
also by § 283
T,=1+3} T,=3Q-§), T,=8Q1=-1K), .
omitting k.
6—2
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Therefore by (66)
(26) 7 (C +¢)™ B, T, (b/k)t = B, {1 + }4* — (k + §4*) cos £ + 3k* cos 28}
x (1+ 4%
—B {1+ §%* — (k + 5K*) cos & 4 3k* cos 2}, -
(2b) (0 + )™ B, T, (k/b)* = § B, (1 + }¥* — k cos £ + 3k* cos 2£)
x (kfB) (1 - ") cos ,
=—§ B, {}k— (1 +3F)cosE+ Fhcos2} k/b.
(20)7* (C'+¢)™ B, T, (k/b)t=1¢ B, (1~ k cos &) (k/b)* cos 2,
=— 18 B, (}k cos £ — cos 2§) (k/b)".
Collecting the terms and putting for brevity
G=Q+ B,—3B,/2b, H=15B,/4b*—3B,/2b + §B, + 5Q,
we obtain
W' =3Q+B,+ (Q+ 3K — Gk + (1H+ 1G + §Q) k*} cos §
+ 3HE co8 28...cuivuirnvrninininnnnnen, (73).

In order to obtain the surface value of 4, we must substitute
the value of k from (60) in (73). :

The first two terms
= 4Q+ B, + B (@+40) (1 +28, cos ).
The next term
=—{Gb+V ({H + 4G +§0Q) + 3GbB,} cos £ — 3 GbB, (1 + cos 2¢).

The last term
= $.Hb* (cos 2£ + B, cos §).

Adding and equating the coefficients of cos £ and cos 2£ to zero,
we obtain

—Gb—(1H + 1G +§Q) 0" — $GbB, + %Hb'ﬁ, + (2Q+ ('8, =0...(74),

and ~3GB, + 3HE =0...uvvrveeeennnnn. (75).
From (74) it follows that to the lowest order
G=0,
whence from (75) H=0.

From these equations it appears that G and H are quantities
of the fourth order at least.
Substituting in (73) we obtain
B =3Q+ B,+ Qk* — §Qk* cos £............ (76).
This is the approximate value of 4’ inside the ring to the first
order of small quantities.
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3831. We can now determine the value of B, Since the
normal velocity must be zero at the surface of the ring, the
boundary condition is

dF _ dF _ 0
q 'd_g p d‘)) =V
which by (62) becomes
dy'dF _dy'dF_
dk df dE dk
where F=b(1+pB,cos§)—k=0.
Therefore

(4Qk — 27QK" cos £) b, sin £ — 9Qk*sin £ = 0,
whence to the lowest order

Bi=$bewecrirrrrrrrerrniane (7).

332. We must now calculate the pressure. Inside the ring
the equations of steady motion are

1dp’ dq* _
;;1;+%——dz—2uﬁ)—0,
1dp’ dq* _
;%‘_'i-%d'—‘w-i-?-ww-—o,

where ¢ is the resultant velocity, whence remembering that
wu=—dy’[/dz, ww = dy'/dw, 20 = M=, we obtain
Ple=E—-3¢+My'........ccoc....... (78),

where E is a constant. Outside the ring the pressure is determined
by the equation

_ p=1I-3pg’,
where II is the pressure at infinity. Now

eS8}

FH@ @)}
and Jk|w = (1 + 4k cos £)/24,

approximately ; also from (76)

%,t—’=g(2k—g2’—zk’cosf);

Jkdy'  Q 11
therefore = k= 3 (2/0 -5 i cos E) ,
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in which we have neglected terms of the first.order, since they are
‘small in comparison with 4™, For the same reason k™ dyr/d§ may
_be neglected, whence (78) becomes

g:E—SgE.(%—15‘46'008&')'+5?;.(§+BJQ+k’—§"’°°sf)-

g

The velocity evidently vanishes when % =0, whence if P be the
pressure along the critical circle

Plo=E+ Q(}Q+ B,)/a'd",
whence at the surface (omitting terms of zero order),

4

Bl (148~ ) con o (79).
From (67) we obtain
‘Zl?k’: =(2Va*~ A,R,) cos £+ (1 —kcos £) (4,/2K — 4,b/2k* . cos £).

Therefore at the surface

Jk dyr
= dk'

= 2_a, (1+4b cos £) [4,/2b+(2Va + $4,(L—3)

| ~ 1A8,/b—A,/25) cos]
= o [4,2b + (473 + 4, (L~ )} cos ], |

by (71).
Therefore
¢ = o A+ AD (4707 + 4, (L~ ] cos £]
hence 2~ -I;I — o [hA, + b (Va4 A, (L — )} cos £]... (80).

Since the pressure must be the same on either side of the
surface of separation, we obtain by equating the values of p, p
given by (79) and (80),

P+ o[22 =TI — 4,p[32a'D"................. (81),
QBH—Fo=—14p {4Va'+ 4,(L-3)}...... (82).
Putting for Q and A4, their values, these become
o ’_’:’P + [L" -
P=11 SO e (83),

4~7ra -+ 16mmp( b 2
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333. Equation (83) determines the pressure along the critical
circle, hence it follows that in order that there should be no
hollow, P must never become negative ; this requires that

W + pc :
TR e (85).

If therefore the pressure at infinity is slightly less than the
above quantity, a hollow will begin to form about: the critical
circle. '

II=o0r>

The velocity of translation of the ring is determined by (84).
Let ¢ be the radius of the circle which approximates most nearly
to the cross section of the ring, then

e=a cosech 7 = 2qab,
therefore L =log 4/b =log 8a/e

and there are three cases to be considered.

(i) Let p=p, p=0, m=4u, where m is the strength of the
vortex ; then substituting the value of B, from (77), (84) becomes

V= 2.-;‘—0 (log 8aje — 1) wveverereraranns (86),

which gives the velocity of translation of a ring of the same
density as the liquid, when there is no additional circulation.

This expression does not agree with that obtained fur the
velocity in (5) and (41), but it must be recollected that since e is
small compared with a, log 8a/e is large compared with }, and
therefore the difference between the two expressions is small.
The present procedure, although more complicated, gives a
perfectly accurate result to the order of approximation adopted,
and the next term in the value of V is of the first order of small
quantities. -

(ii) Let there be a ring-shaped hollow round which circula-
tion takes place.

The conditions for the existence of such a hollow are that p
should be zero at the surface, and also that u'= o =0; hence from
(83) and (84) or directly from (80) we obtain

II = p*p/32a°b°



88 CIRCULAR VORTICES.

(iii) It is also possible to have a ring-shaped mass of liquid
relatively at rest, surrounded by liquid in a state of cyclic irrota-
tional motion. In this case the surface of separation will be a
surface of discontinuity along which slipping takes place, which
possesses the properties of a vortex sheet. The condition for this is
that 4’ =0, whence the liquid constituting the ring is relatively at
rest, and it moves forward like a rigid body with a velocity V
which is given by (87). In order that the liquid should be
continuous at the surface of separation, it is necessary that

IT = or > u’p/32a°b". .

It can be proved that in cases (ii) and (iii) the value of B3, is of
the second order of small quantities, see Appendix.

Fluted Vibrations of a Vortex Ring.

334. We have shown in § 319, that a vortex of small cross
section is stable with respect to a deformation of its central line;
we shall now investigate the effect of a deformation of its cross
section, such that the disturbance consists of trains of waves whose
crests are circles which are parallel to the critical circle. These
vibrations may be called fluted vbrations.

Instead of adopting a procedure analogous to that employed in
§ 288 for investigating the corresponding vibrations of a rectilinear
vortex, it will be more convenient to use cormplex quantities and
throw away the imaginary part'; we shall therefore suppose that
the cross section of the ring at time ¢ is represented by an
equation of the form

E=b+b3B.e™ ™ e (88).

In the beginning of the disturbed motion the 8’s will be small
compared with b, except B, whose mean value we have already
shown to be equal to $b; we may therefore in considering the
variations of B, regard the cross section of the ring as an exact
circle in steady motion; but the value of B, thus obtained can
only be regarded as a first approximation, and a more accurate
result would be obtained by going to a second approximation.

1 The employment of complex quantities was suggested to me by Mr A. E.
H. Love,
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‘We shall not however consider in detail this latter point’, but
proceed at once to determine the value of B, on the supposition
that the cross section is an exact circle in steady motion.

335. Dropping the suffix », (88) so far as B, is concerned may
be written .
E=b+bBe™ ™ i, (89),

also let the current function due to the disturbed motion be
' x=(20)7H(C + o) AR_(bfe)*+} e+
outside, and
x' =253 (C+ ) BT, (k[b)** ™+
inside. The coefficients 4 and B will be small complex constants
of the order 8; also by (66), (C + ¢) = (2k)! approximately ; also
since R,, T, are respectively multiplied by small quantities they
may approximately be regarded as constants; we may therefore write
x =A Gk ™ i, (90),

x =By ™ (91).

336. If p and ¢ are the velocities perpendicular to the
surfaces 7 and £ measured in the directions shown in the ﬁgure
to § 280, the boundary condition is

dF dF d
F +J ( aE —-p5 dn =0.
Since J™ = 2ak, we obtain from (89)

b (208 + qnB) €™M _ pk = 0..ovoo 92).
Qutside the rino'
qg= ; d_n(‘\" x) 2a'k dﬂ ("""X)

Since ¢ is multiplied by a small quantity, the term dy/dn may
be neglected ; also from (67) the principal term in (2a%)™ dyr/dn
is w/4mwak, which at the surface of the ring is approximately equal
to U the tangential velocity just outside the ring in steady motion;
we may therefore in the small terms put ¢= U. Also

P= g g 20

1 A similar question arises in connection with linked vortices, which Prof, J. J.
Thomson has investigated by catrying the approximation to the second order.
This would be very laborious in the present case.
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" Now 4a™"k dyr/dE is very nearly equal to the normal velocity
of the ring in steady motion, and may therefore be neglected (since
the ring is supposed to be at rest in consequence of its velocity of
translation having been reversed) ; we may therefore put

1 dx Am g+
k’ 2a* df 2a ¢ ’
whence (92) becomes

=248 (U + 2abA/n).....u.oeeeeeennennnn (93).

If U be the tangential velocity just inside the ring, it can be
shown in the same manner that

B=2a"0B (U + 2abA/n) ....cocuvennnnn.n. (94).

337. We must in the next place determine the veloc1ty
‘potential due to the disturbed motion.

- Since the disturbed motion is irrotational and acyclic, its
velocity potential at any point P is equal to the flow along any
path joining P with the origin. Let this path be the curve £=0
from 7=0 to 5 =7, and the curve =17 from £=0 to £=¢£
Then

¢
é=— f " pdy + f JqdE
0

-G [S T

Substituting the value of x from (90), we obtain

" /1dy 1+ cosh g At
(; Eg)tw a smhﬂ Ame

= Ama™ (b/k)* (1 +2k+...) ™
whence keeping only the largest terms we obtain, since & is small,
- f " T pdn = — Auw” (bJk)" €
Also °
fJ—x qu Ana (b/k)'] g+t dtg
=— A L(b/k)" ™ 4 Aua™ (b/lc)“ A
whence =— Awa™ (Bfk)" €™M e, (95).

Similarly it can be shown that
¢ =B (kb €™M i (96).



FLUTED VIBRATIONS. 91

338. Putting for a moment k=b + &k, the pressure ou'osxde
‘the ring is determmed by the equation

P_ dU Jdy
» const. — —¢— }( = dn

Hence if dp, 8p be: the increments of the pressure p due to
the disturbed motion just outside and just inside the vortex,

®__4- U(dUszc—i‘&‘).

8/c+ ) + terms of 2nd order

P dk 2ua* dk
Now from (67) it follows that to a first approximation '
U= pldmak,
therefore dU/dk =-U'k,

whence dropping the exponential factor
‘ 8p/p =— ANja + UB — nUA/2a%.
Substituting the value of 4 from (93) we obtain
' 8p/p =B {U*—n (U + 2abr/n)};

if therefore we write 8, and w for 2a¢b8 and U/2ab respectively,
we shall obtain

~ ndp/2abp =—B, A+ 2anw +n (n— 1) w 4 IR (97).
Just inside the vortex the pressure p' is

 — const. — —4(U"+ 87 st J%)'+M(«p+ Woatty),

whence

Yo g-v (dUl o o, fzz)“”\ S+,
But M = — w/4mwa’®’, also from (76) U’ = u'k/4arab’, therefore
dU'(dk = U'[k, Ma*=— U/k;
also  U'=—1}a dyldk,
whence omitting the exponential factor
8o =—¢' + USkjk+ 3 U'a™dy'|dk — Uy [ka®
=B\ a+ U*8 +nU B/2a* — U'Blab
=B [U* + (U + 2ab\/n) {2ab\ + (n - 2) U'}].
Putting U’/2ab = v, this becomes

n8p'[2abo =B, (N + 2(n — 1) v + n (n = 1) v'}......(98).
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Since 8p = 8p’, we obtain
piN+2mw+n(n-1) '+ (N +2n-1)M+n(n—1)v"}=0,
or writing f for a/p this becomes

MA+f)+2n{nw+f(n—1)v}+n (n—1) (w'+fv") =0...(99).

In order that the steady motion should be stable it is necessary
that both roots of this quadratic should be real.

Referring to § 288 it appears that the period equation (99) is
exactly the same as equation (21) of that section with the sign of
Achanged. This however does not affect the question of stability ;
hence the conditions of stability are the same in both cases, as
might have been expected, since a circular vortex whose cross
section is small compared with its aperture, approximates to a
rectilinear vortex. It therefore follows that if there is slipping at
the surface of the ring, the steady motion must be unstable.

339. We have shown in § 332 that if the pressure at a great
distance from the vortex is less than (u%p + u*0)/32a%" a hollow
space must exist within the ring; and that if this pressure is just
below this critical value, the hollow must begin to form at the
critical circle. The steady motion of a ring in which such a hollow
exists, when there is an additional circulation inside the ring,
which is always possible when a hollow exists, has been considered
by Mr Hicks, and one curious point connected with the investiga-
tion is, that it seems probable that under certain circumstances
the hollow might slip out of the ring, so that two rings might be
formed, one of which consists of a hollow with circulation round it,
and the other consists of a rotational core with no additional
circulation; but until the subject has been more fully investigated,
it cannot be asserted that this state of things could actually take
place.

In Mr Hicks' investigation from which the foregoing articles
are taken, the more general problem of the fluted vibrations of a
vortex when there is a hollow and an additional internal circula-
tion is considered. It should however be noticed that his period
equations (63) and (65)' do not agree with equation (99) of § 338.
Unless therefore some error exists in the analysis of §§ 334—338,
his results upon this portion of the subject cannot be regarded as
altogether free from doubt.

1 Phil. Trans. 1885.
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340. When a hollow exists in the ring, it is possible for it to |
pulsate as well as to vibrate. The question of pulsations has also
been considered by Mr Hicks.

EXAMPLES.

1. Prove that effect of a circular vortex at a great distance
from itself, is approximately the same as that of a doublet of
strength 4mc', where m is the strength of the vortex, and ¢ is its
radius.

2. The motion of an incompressible fluid in a spherical vessel
at any instant, is such that each spherical stratum rotates like a
rigid shell, the rectangular components of its velocity being w,, o
w,, these quantities varying from stratum to stratum; show that
if each element of fluid is attracted towards the centre with a
force whose intensity per unit of mass is

d d d av

where V is any function of the coordmates, the motion of the fluid
will be steady ; and find the pressure at any point.

3. If p, be the period of the quick vibrations when two
vortices of equal strengths are linked once through each other, and
p, when they are linked twice through one another ; show that

T_1_6m
pop Td
and prove also that the period of the vibrations gets longer, as
the complexity of linking increases.

4. Prove that the current function due to a fine circular
vortex of radius ¢ and strength m, may be expressed in the form

mwa f " e J, (A=) J, (o) dh,

the upper or lower sign bemg taken according as z — 2 is negative
or positive.
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-

5. A closed vessel bounded by two coaxidl circular cylinders
of radii @ and b respectively and of lengths 2h, with plane ends
perpendicular to the axis is filled with liquid in rotational motion,
the vorticity being uniform, and the planes of the vortex filaments
parallel to the axis. Show that when the motion is steady, the
current function is of the form

. I (nw) K (nw)} cos nz
_ 2 9 27 o 4, \"w) _
¥={(="~d) (=~ b) ~ &r2L, {Il (na) . K‘, (na)) cosnh’
where. the summation extends to all values of n given by the
equation .

1, (na) K, (nb) = I, (nb) K, (na).

6. If ©, ® are the velocities of the liquid surrounding a thin
circular vortex ring of strength m, at two points in the plane of
the ring each of which is the inverse of the other with respect to
the radius of the ring, and whose distances from the centre of the
ring are R, R/, where R > R’; prove that .

8/R+®yR=2"[" 4
Tl (R —R'.sin’B)Q'



CHAPTER XV.

ON THE MOTION OF A LIQUID ELLIPSOID UNDER -THE -
INFLUENCE OF ITS OWN ATTRACTION.

341. IN the year 1738 the Academy of Sciences at Paris
offered a prize for an essay on the subject of the theory of the
tides. The authors of four essays received prizes, viz. Maclaurin,
Euler, Daniel Bernoulli and Cavalleti. The essay of Maclaurin is
chiefly of importance, owing to his having proved that when a
mass of liquid is rotating as a rigid body about a fixed axis under
the influence of its own attraction, a possible form of the free
surface is a planetary ellipsoid, whose polar axis coincides with the
axis of rotation. In 1834 Jacobi discovered that under the same
conditions, another possible form of the free surface is an ellipsoid
with three unequal axes, whose least axis coincides with the axis
of rotation. The researches of Dirichlet, Dedekind and Riemann
have shown, that the ellipsoidal form is a possible form of the free
surface, when the liquid does not rotate as a rigid body. The
discussion of these different ellipsoids forms the sub_]ect of the
present chapter.

342. We shall commence by obtaining the general equations
of motion of a mass of liquid, which rotates about its centre of
inertia under the influence of its own attraction, in such a manner
that its free surface always remains an ellipsoid with variable
axes. The motion of the liquid is supposed to be rotational,
but the molecular -rotation is assumed to be independent of
the positions of individual elements of liquid, and it will be
shown that the consequence of this assumption is, that the com-
ponent velocities at any point of the liquid are linear functions
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of the coordinates of that point. We shall first of all show
that the particular kind of motion under consideration, may be
generated from rest by means of the following three operations,
which are supposed to take place instantaneously one after the
other’.

(i) Let an ellipsoidal case whose axes are a, b, ¢ be filled with
liquid and frozen, and then set in rotation with component angular
velocities £, 7, £ about the principal axes.

(ii) Let the liquid be melted, and let additional angular
velocities {,, {,, 2, be impressed on the case.

(iii) Let the case be removed, and by means of a suitable
impulsive pressure applied to the free surface, let the axes be
made to vary with velocities d, b, ¢.

343. Let «, y, z be the coordinates of an element of liquid
referred to the principal axes; u, v, w the component velocities
of the element parallel to the axes; U, V, W the component
velocities relative to the axes; and w,,w,, w, the angular velocities
of the axes about themselves. Then

o=0+§ o,=0,+9, 0,=0Q,+ ¢

The kinematical condition to be satisfied at the free surface is

ar dF dF dF _

’d_t"l‘UEw—'f'V@‘FWE;—O ............... (1),
where F = (z/a)* + (y/b)* + (¢/c)* = 1 =0,
and U=u+oy—wg,

V=v+ozs—aoz,
W=w+ogz-oy.
Equation (1) can be satisfied by assuming
u=lz+my+ngz,
v=lz+my+ng,
w=lx+my+ ngz,
where I,, m,, &c. are independent of z, y and 2.

Substituting in (1) and equating coefficients of powers and
products of z, y, 2 to zero, we obtain

1 Greenhill, Proc. Camb. Phil. Soc. vol. 1v. p. 4,
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l, =dfa, m,=b/b, n,=dfc,
(ny+ o) ¢ +(m,— ) B*=0,
G+ew)a'+ (n,-w,) c'=0,
(m,+ w,) b+ (I, —w,) a’=0.

But from the mode of generation £, 7, { are independent of «,
¥y, z; therefore

2=m,—mn, 2n=n-1, 2=l —m
Hence the nine coefficients are completely determined, and we
finally obtain
_gz o @'-b)-2d¢ o ("'—a’)+2d’ n,
ot drr It ¢'+a'
b_y o, (b — c’) 2%t | o,(a’—b")+ 2b%¢ 9
b + b’ z 4+ a’—{—b’ x »...( ).
o, (¢'— a’) 2c™n o, (b"—c") + 2c'¢
c+a F+od Y
These expressions obviously satisfy the equation of continuity,
since on account of the constancy of volume

aja + bfb + é/c=0.

V=

x4+

+ l

J

844. By §23 (4) the general equations for the pressure
referred to moving axes are

ldp du du du
2 ds x+dt 'vw,+ww+Udz+ de Wd =0...(3),
with two similar equations; and by eliminating the pressure and
potential, the equations for molecular rotation will be found to be
dé

:ii—f—nm,+§m,+ Ud5+ de+ W"uf de+ndy+ Cdz -(4),

with two similar equations. Substituting the values of u, v, w
from (2) in (4) we shall obtain

300, (25 (-0
)50 (b (-0}
L0 (it )-o

B. I 7
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If h,, h,, h, are the component angular momenta about the
axes

= pf[[(wy - v2) dz dy de,

M .
5(bl +ca){(b ! o, + 4b*c E}
h,= —ﬁ——{(c'— o) w, + 4can) | ®)
2 5(c’+a’) 0y M [ coceocccnees N
M 2 _ 71\ 179
h'=5_(a’+b’){(a -b) m,+4-ab§}d

where M is the mass of the llquld and the dynamical equations
for rotation are

dh,

(Tt—-hw +hw =
%—h,m,+h,m,=0 e erreraeenneanean, (.
%’%’— ho, + ho, =0

If we now introduce the six new quantities u, v, w, u', v/, v’
employed by Riemann, such that

utv =w, v+ =w, w+w = o,
_2bQ, . _20Q, . 2060, --(8)
“Fro T d+at’ Ta'+ b

we obtain i
E={(b+ c)u — (b—c) u}/2bc, &c., &
=M {bd+c)u' + (b—c) u}, &c, &c.}

Substituting these values of £, 9, ¢, and h,, h,, k, in (5) and (7),
and then multiplying (5) by $Mabc and adding to (7), we obtain

(b+c) ‘fi—': +2u dit (b+c)+(b—c + 2a)vw’ +(b—c-2a) vw=0...(10).
Similarly by subtracting, we obtain
c) 7 gt 2u (b ¢)+ (b+c— 2a) vw + (b+ ¢ + 2a)v'w'=0...(11).

Four other equations can respectively be written down by
symmetry, and we thus obtain six equations of motion,
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345. The three remaining equations can be obtained as
follows. The potential of the liquid at an internal point is

V=3(4< + By + C*) - H,

i
where H=gMj:"V(a,ﬂ)(b,ﬂ)(o,ﬂ),
_ 24H
" Tada’

Now if in equations (3) we transpose the terms p~ dp/dz — X
&e., to the right-hand sides, and then substitute the values of the
velocities given by (2), the left-hand side of each equation will be
a linear function of #, y, z; moreover if we multiply each equation
by de, dy, dz and add, the right hand side of the resulting equation
will be a perfect differential, and therefore the left hand side must
be s0 also. Hence (8) must be of the form

ldp
p dw

ld/P+By+ha:+/3y+fz=0, ............. (12).

+Az+ax+hy+gz= 0

1‘]4’ -
;22+Cz+gm+fy+'yz—0

J

The last three terms of these equations are the component
accelerations of an element of liquid parallel to the axes ; and since
there are no external impressed forces, the moments of these
accelerations about the coordinate axes must be zero, hence

2m {(gz +fy +v2) y — (ha + By + f2) 2} =0,
or fz'm @' -2)=
therefore f=0,
similarly g=0, h=0; and (12) reduce to

;dp+(A+a)m 0

ldp
pdy
ldp
p dz

+B+B)Y=0}.cceeeeriennnnn. @183),

+(C+9y)z= 0

where a, 8, y are quantities which are mdependent of z, 1/, 4 and
which will hereafter be determined.
7—2
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Integrating we obtain
plo+TI+}{(A+a) 2+ (B+B) g + (C+a) £ =0...(14).
Since the external surface is the ellipsoid
(#/a) + (y/b)* + (s/c)' =1,

.

we must have

A+a)a*=B+B)b=(C+y)c=20......... (15),
where o is a function of the time. Hence (14) may be written
P_ _Z_y_z
. (1 A S (16)

In order that the external surface should be a free surface, it is
necessary that = should vanish, and consequently o must never
become negative.

346. Returning to (13) we see that a is the coefficient of z in
the expression for the component acceleration parallel to = of an
element of liquid, and therefore
d (d) w + W

=%

{(a- b)w+(a+b)w}+ —{(c a)v—(c+a)v'},

+‘ai:_(w w).{(a b)w— (a+b)w}+—{(c-a)u+(c+a),,}

=§{,}E{,_(a-b)uf-(a+b)w°- (a—c)v’-(a+c)v”},
whence by (15),
*%‘ (a=0) = (@+0) 0"~ (@ = b) 0" ~ (a-+ B)u*= T — }4a (17).

Two other symmetrical equations can be obtained; hence,
collecting our results, we have the following nine equations;
ti—(a—c)v'—-(a+c)v*—(a—d)w'—(a+d)w"=0c/a - }4a)
P-b-a)w' —G+a)w*— (b —c)u'—(b+c)u=q/b— 3Bb
$6—(c-d)u'—(c+du*—(c—a)v*—(c +a)v* =a/c—3Cc

(b-c)u+ 2u (b—¢)+ (b+c—2a) vw+(b+c+ 2a) vw =0

G+c)w +2u (b+6)+ (b —c+2a)vw + (b — ¢ — 2a) Yw=0 F(18).

(c—a)v+ 20 (¢ —a)+(c+a—2b) wu+(c+a+2b)w'u'=0

(c+a)v+20 (é6+ad)+ (c—a+ 2b)wu' + (¢ — a — 2b) w'u=0

(@=b)w+ 2w(@—b)+(a+b—2c) uv + (a+ b+ 2)uv'=0

(a -hb)'w +2w (@+b)+(a—b+2%)ur'+(@a—-b- 2¢) w'v=0 |
. abe = const.
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These equations were first obtained by Riemann'; they furnish
ten independent relations between the ten unknown quantities
a,b,c, u,u,v ¢, w,w and o, and are therefore sufficient for the
complete solution of the problem.

347. Three first integrals of the above equations can be at once
obtained.

Multiplying equations (5) by &/a, 7/b, {/c, and adding, we
obtain
2—:+z’b—:+%=oonst ..................... (19),
which expresses the fact that the vorticity is constant®.
Similarly from (7) we obtain
h+h}+h}=const.....c.ccuvennnnn.n. (20),
which expresses the fact that the angular momentum is constant.
The third integral is the equation of energy
T+ U=constecuuccevniinnirnnnnnnnen (21).
Since p [l|@dadydz = }Ma®,
and [[fydadydz = 0,
we obtain from (2)

Py fi b ros ST WO Gy

4b* '? 4c'a’n®  4a’d’
+bg+cg c+a’+a'+€'} ......... (22).

1 Abhandlungen der Koniglichen Gesellschaft der Wissenschaften zu Gottingen,
vol. 1x.; see also Proc. Lond. Math. Soc. vol. xvu1. p. 256,

3 This equation may be shortly proved thus :—

Sinoe £, 7, ¢ are independent of z, y, 2, the vortex lines must all be parallel to
some diameter r of the ellipsoid. Let !, m, n be the direction cosines of 7, dS an
element of the plane conjugate to 7, and e the angle between 7 and S.

The condition that the vorticity should be constant requires that

const. = ffw sin edS=wS sih e=wSpr-1,
where p is the perpendicular from the centre on to the tangent plane parallel to the
plane S. But, since the volume of the ellipsoid is constant, Sp=const., therefore

w/r=const., or
2
w? (p n ) const.,

f.e., + =5 =const.

atr
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Now! U=13o [l dedydz,

-W'f{ a+x b'ix c’ih) }d’l):

where P =/(a® + ) (b* + \) (¢* + \), therefore

e[ B e[ 4 ()

Integrating the last term by parts we obtain

Motion of an Ellipsoid of Revolution®.

848. Let us now apply the preceding equations to determine
the motion when the free surface is an ellipsoid of revolution,
which is rotating about its polar axis. Let the density of the
liquid be unity, and let a=b; and let o, o, § 2, Q, Q, O, be
each zero; then w,=§ w=w'=%¢&

From the last of equations (5) we obtain

d
#()=o
therefore Ele=2¢o/cy

where the suffix denotes the initial values of the quantities.

Let R*= a’, and let us introduce two new variables 6 and p,
such that

0=R'/a*=¢c/R
and p=14/(@m) = § c/es (2m)} = pib)a,

where a is the initial value of . From the first and third of
equations (18) we obtain

36 an 2006
-§0+7@--2 p0="7 - 46,
0—» —306.

1 Maxwell’s Electricity, vol. 1. art. 85.
3 Dirichlet, Crelle, vol. Lviir. p. 209,
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Eliminating € and o, and remembering that 4 + }C = 27, we
obtain

. 3
R,(20+9,) 2m (1-p") + o

2(2+ o*)é'?g”s ( ) =4 (3-00).

: B dn.
Putting F6) = f T AT Ve R
(1 A

then e _<9° l)f A+ A+’

and the left-hand side of the last equation can be shown to be equal
to 8wF’(6); integrating this equation we obtain

(2+5 )0’+81r{<p°) 6— F(o)} — const, = 87K,

which is the equation of energy. Hence the equations of motion
finally become

1%,(2o+;,) om (1 — p’)+30h

a

| (2+-3,)9’+87r{(€3) e-F(o)}=87rK_

These are Dirichlet’s equations for the motion of an ellipsoid of
revolution.

2(2+%,)é ":.'+s {P°-—F'(0)}=o» ...... (24).

349. Since the remainder of the present investigation depends
upon the properties of the function ¥ (6), when 6 is positive, it will
be convenient to trace the curve y = F' (z). Now

F@)=20"@"-1)" tan? (6° - 1)}, 6<1;

and
‘ 1+(1-67%
1-(1-69¥ |
Also when =0,F () =0, F' (6)=c ; when 6=1,F (6) =2,
F' (§)=0. When 6 increases from 0 to 1, F' (6) increases from

0 to 2 which is its maximum value; and F () is positive and
diminishes from o to 0.

F@)=60"1-06%""log 6>1.
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When 6 increases from 1 to ©, F(f) diminishes from 2 to 0;
also F' (f) is always negative and vanishes when §=o. Hence
the axis of # is an asymptote. The form of the curve is shown in
the figure.

M X

350. Let us first suppose that the motion is irrotational, in
which case p = p,=0; also that initially 6 = 0.

Equations (24) now become

R,(29+ ) 27r+2g,

(1232w

(2 +%,)0'=87r {F (6) - F (a).

From the last equation it follows that ¥ (f) must never be less
than F(a), throughout the motion. Now if @ =1, the initial form
of the free surface would be spherical; also since F () is a
maximum when =1, it follows that § =a=1 throughout the
motion ; hence the free surface always remains spherical

If a <1, the initial form of the free surface would be a
planetary ellipsoid ; also from the figure, it is seen that the
equation F'(6)=F (a) has one real root 8 which is greater than 1;
hence § will vanish when 6 =g, and therefore the free surface
will oscillate through a sphere to an ovary ellipsoid, and back
again to its original form, the time of a complete oscillation

being
- 2+ 07
e[/ For=r®

The motion is of a similar kind when the initial form of the free
surface is an ovary ellipsoid.
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351. The general character of the motion is not altered when
the motion does not commence from rest, provided the initial value
of 6 does not exceed a certain limit. If & be the initial value of 6,
the last of equations (24) becomes

Q+6%6'=(2+a*)@ + 8w (F(f) — F(a))......(25).

Let (2+a?*)a*— 8w F (a) = 87k,

and (25) becomes
2 +6%)¢=8xn{F()+F)

In order that 6 may vanish it is necessary that k£ should be
negative, in which case we may put £ = — F (y) ; hence the ellipsoid
will oscillate between the values @ =r, 6 =4¢', where v, " are the
two real roots of the equation F(y) = F' (). But if & is positive 8
will indefinitely increase or indefinitely diminish with the time
according as & is positive or negative. In the former case the
ellipsoid will gradually become elongated to an indefinite extent, and
in the latter case will become indefinitely flattened.

In the foregoing cases o is always positive, and therefore the
motion can take place without the aid of an external pressure.

352. We must now consider the case in which there is mole-
cular rotation.

Let & be a quantity defined by the equation
F' (8)=(pJo)",
then since F” (3) is positive, 8§ must lie between 0 and 1; also let
¥ (6)=0F" (&) F (6).
The character of the motion depends on the properties of the
curve y = ¥ (), which we shall now investigate.

Y

In the figure let OPR and OST be the positive branches of the
curves ¥ = F (z) and y =+ («) respectively ; and let OR be the
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straight line y =«F" (8). The ordinate of the curve y =y (x) will
evidently be equal to QM — PM= - P(Q), and will therefore be
negative so long as # < OT; also since ¥ (8)=0, ¥ (z) will be
numerically greatest when =38, and its value will be negative.
When « > OT, 4 () is positive, and the straight line y =«F" () is
an asymptote to the curve.

353. Putting (2 +a*)a* =8k,
and remembering that p = p,0/a, (24) may be written
o 1 , 3¢
F(20+ ?) =2n (1 6F B) + 305
1\, 3¢ ,
2(2+§.)0—7+8mp @)=0"}....... (26).

(2+5) 0+ 8mv (O =87 [y @+

From the last equation it follows that during the whole motion
V¥ (a) + k — Y (0) can never become negative. Since Y (3) is the
greatest negative value that 4 () can have, there are three cases
to be considered according as

@) ¥ (a) +k=(3),
(i) 0> (@) +k>¥ (),
(ii) ¥ (@) +k>0.

Case (1). The equation of condition may be written

E=Ar(8) = (@) eeveerererreeeenes @n.

Now k is always positive, and the right-hand side of (27) is
always negative unless @ = §, when it is zero, hence a =8, k= 0; also
since ¥ (8) — ¥ (6) must never be negative, it follows that 6=§
throughout the motion. Now & < 1, therefore the ellipsoid must be
planetary, and the motion is such that the liquid rotates as a rigid
body about the axis of the ellipsoid, with angular velocity

& =2n8"F (3).

It will hereafter be shown that the maximum value of the
quantity &°F" (6) is 2246, and that the equation &'F" (8) = 6*F" (6)
has two real roots, 8, &', both of which are positive and less than
unity. Hence for every value of &*/27 which is less than -2246

there are two planetary ellipsoids which are possible forms of the
free surface, and which coincide when §*/27 = 2246 : also since o
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is always positive the motion can take place without the aid of
an external pressure.

This is Maclaurin’s ellipsoid, which will be treated in a different
manner later on.

Case (ii). Here Y+ (a) +% is a negative quantity which is

numerically less than 4 (8); hence we may put this quantity
equal to ¥ (y), where y <8.

R

] ’

<

In the figure let OM =+, 0A’=qa, 08'=3, ON =6, OM =+,
where QQ’ is parallel to Oz. Then
—k=QM;

therefore y<a; also since v (a) + & — 4 (), that is ¥ (y) — ¥ (6),
must be always positive,
PN > QM.

Now the equation ¥ (y)—4(0)=0 has evidently two real
roots lying between zero and OT, viz. @ =, 0 =4¢'; hence the
ellipsoid will oscillate in such a manner that 6 must always lie
between o and +', and the time of a complete oscillation is

- 2+07*
(@) f J e 20 28).

From the first of equations (26) it follows that the pressure will
not remain positive, unless G*F(8) never becomes greater than
unity throughout the motion, hence "*F"(8) must never be greater
than unity. Also since

&'=2m (pfa) ' =2nF (8) & ............ (29),
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this condition requires that {*/27 should never be greater than
unity.
Since
E+a)&Br=4 (M) —¥ (@
: =44'-QM,
it follows that we must have

#< (2,3”—:1) 4 @) = @) errrrererren (30).

If the conditions (29) and (30) are not satisfied, an ex-
ternal pressure will be necessary in order to maintain the
ellipsoidal form of the free surface.

Case (iii). In this case 4 (a) + k is always positive, if there-
fore we put it equal to +r(e) where e=0OR, we must have
OR’ > OT. The last of equations (26) becomes

(2+677) 6" =8 [y () — ¥ (O)}-

The equation ¥ (¢) —4y (6) has only one real root, viz. § =e¢,
and therefore the motion can never be of an oscillatory character.
If 6 be initially positive, then since ¥ (6) is negative so long as
0 < OT, and positive when 8 > OT, it follows that the ellipsoid will
gradually elongate itself to a limiting form determined by the
equation @ =e. On the other hand if § be initially negative, the
ellipsoid will ultimately become indefinitely flattened.

The possibility of this motion taking place without the aid of
an external pressure, depends upon conditions similar to those of
the preceding case. :

Steady Motion of an Ellipsoid.

354. When a mass of liquid is rotating in a state of steady
motion under the influence of its own attraction, the different
ellipsoidal forms which its free surface can assume may, as we
shall proceed to show, be classified as follows.

(i) Maclaurin’s Ellipsoid, in which the free surface is a
planetary ellipsoid, and the liquid rotates as a rigid body about
the polar axis of the ellipsoid. If p be the density of the liquid, ¢
the angular velocity of the ellipsoid, which in this case is identical
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with the molecular rotation, it will be shown that &*/4mp must not
be greater than *1123, in order that steady motion may be possible,
and in this case there are two ellipsoids, which coalesce when
& 4mp = 1123,

(ii) Jacobi's Ellipsoid, in which the free surface is an ellipsoid
with three unequal axes, and the liquid rotates as a rigid body
about the least axis. In this case {*/4wp must not be greater
than ‘0934 in order that the ellipsoid may be a possible form of
the free surface. Hence if {'/4mp <0934 there are three ellip-
soidal forms, viz. two planetary ellipsoids, and an ellipsoid with
three unequal axes. When ¢*/4mp =-0934, Jacobi’s ellipsoid
coalesces with the most oblate of the two planetary ellipsoids;
and when &*/4mp lies between ‘0934 and ‘1123 the revolutional
form is the only one possible.

(i) Dedekind’s Ellipsoid, in which the free surface remains
stationary in space, but there is an internal motion of the particles
of liquid, due to molecular rotation ¢ parallel to the least axis. In
this case if @ and b are the greatest and mean axes respectively,
a'b*e*/(a’ + b*)* mp must not be greater than ‘0934 ; and when the
former quantity is equal to ‘0934, we must have a=b, and
Dedekind’s ellipsoid coalesces with the most oblate of the two
Maclaurin’s ellipsoids.

(iv) An ellipsoid, which will be called the Irrotational Ellip-
s0id, in which the axis of rotation is the mean axis, and the motion
is irrotational. In this case the revolutional form is not possible.

(v) An ellipsoid in which there is molecular rotation ¢ and
an independent angular velocity ¢+ Q about the axis to which ¢
refers. In this case the axis of rotation will be the mean or least
axis according as

¢ -b 2a )
Q<or> '+b’(l+ J@ =5
When this inequality becomes an equality, the free surface

will be an ovary ellipsoid rotating about an equatorial axis. This
case includes the four preceding cases.

(vi) Riemann’s Ellipsoid, in which the ellipsoid rotates about
an instantaneous axis lying in a principal plane. This case
includes all the preceding cases; if the axis of rotation does not lie
in a principal plane steady motion is impossible. It is moreover
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impossible for steady motion to exist when the axis of rotation is
the greatest axis,

The foregoing propositions might be established by employing
Riemann’s general equations of motion, but when the rotation
takes place about a principal axis, it is simpler to start from first
principles’, and we shall therefore commence with Case v.

355. Let ¢ be the axis of rotation, w,=Q + ¢, then from (2)
we obtain
2

- ) 2
u=%,—_*_—b,ﬂy—§y, 'v—a' bﬂa:-i-ta:,w 0...(31).

a’+ b
The hydrodynamical equations for the pressure referred to the
principal axes of the ellipsoid are therefore

1dp du du )
pdw+Aa’_”(Q+ O+ wa+ Vd~_0
1dp

dv dv
pdy+By+u(ﬂ+§)+U =03}...... (32).
1dp

d
dz+Cz =0

2" Ny

a’+ b’

2b* Qa

@+ b’

Substituting these values of u, v, U, V in (32) we obtain
| s

1%+ [a-0@+n Sp 2 (55g) 2] a0

l%” [B+2n(n+c) ,+b,+ﬂ (a:;,f:)'—é"]yﬂ,

U=u+(Q+¢&)y=

Vev—(Q+t)a=—

ldp .
pa“"'Cz -0,

the integral of which is
2
L4 (4ot + By +09) - 2@+ @~ 9) 555 e

+§{n- (a +2 }(w‘+y’)=const.,

which determines the surfaces of equal pressure.
 Greenhill, Proc. Camb. Phil. Soc. vol. m. p, 238 and vol. 1v. pp. 4 and 208,
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The condition that the free surface should be the ellipsoid
(z/a)’ + (y/b)" + (z/0)' =1, is
a®— bt . af — bA\®
a'{A -20 @+ 9 5 + @ (Grp) -c}]

o a’+ b

-0 Ay .(33).
=b’{B+2Q(Q+§)g,_+—:’+Q*(Z’+:’ _C.} (33)
= Cc

These equations show that Aa® is greater than Bb® or C¢*, and
hence a must be the greatest axis; and therefore the greatest axis
can never be the axis of rotation.

The axis of rotation will be the mean or least axis according as

Cc* > or < Bb,
that is, according as ’ \
_ @b (@ =bY
£-20(Q+0) 5m- 2 (5o

is negative or positive, that is, according as
4 a'-b 2a
g<eor >_a,'+ B 1+ Ta—5)"
If the ratio §/Q) is such.that this inequality becomes an -
equality, we must have b =¢, and the free surface will be an ovary
ellipsoid rotating about an equatorial axis. This is the only case
in which the free surface can be an ovary ellipsoid. '

356. We must now consider the first four cases in detail.

Case (i). Maclaurin’s Ellipsoid.
Here a =5, Q =0, and (33) becomes

The free surface is therefore a planetary ellipsoid, and the
liquid rotates with angular velocity ¢ about the polar axis.

Now

® da
A=2 ‘c —_—3
Ly fo (a + 7\): (0’ + X)i

_ . [ dr
0—27rpacfo (__~—ia’+7\) ey, .
Putting v = (1 — ¢)¥/e in (14) and (15) of § 148, we obtain
A =2mpe* (1 — &) {sin™' e — e (1 — &)},
O = 4mpe™® {e — (1 — ") sin' ¢},
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where e is the excentricity, whence (34) becomes
g /2mp =€ (1 — ") (8 — 2¢") sin™* e — Be (1 — ¢)}}...(85).

The right-hand side of this equation can easily be seen to
vanish when ¢ =0 and e=1, and to be positive for all values of e
between 0 and 1. Hence as e increases from O to 1, the right-
hand side increases from zero to a certain maximum value, and
then decreases to zero. It therefore follows that for all values of
&*/2mp which are less than this maximum value, there will be two
- ellipsoidal forms of the free surface, the excentricities of whose
meridian curves are determined by the two roots of (35); when
&*/2mp is equal to this maximum value, there is only one ellipsoidal
form ; and when {*/2mp is greater than this maximum value, the
ellipsoidal form is impossible.

The excentricity of the ellipsoid corresponding to the maximum
value of {*/27p is determined by the equation

(9—8¢") sin" e=e (9 —2¢") (1 — &)\.
In this put ¢ =A%(1 +\*) and we obtain
A9 +TAY
@+ (9 +2)
In order to find the root of this equation’, denote the left-hand
side by f(A). Let A =25, then by the aid of the formula
tan™' 2'5 = tan™ 2 + tan™" ,
we obtain J(25)=-0025.
Let A=25+y,

then approximately
y=—f(@If (25),

—tan™* A=0.

also S (2:5)=- 085 nearly;
therefore y = 0293,
A =25293.

Substituting this value of A in (85), we shall obtain
&/ 4rp = 1123,
which determines the maximum value of the angular velocity.
The value of the excentricity will be found to be approximately
equal to “93.

! Besant’s Hydromechanics, ch. viir. ; see also Thomson and Tait’s Nat. Phil.
vol. 1, part m, p. 327, where a table is given,
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857. Case (ii). Jacobi's Ellipsoid.
In (33) put & =0, and we obtain
A-8a'=B-{)b'=Cc

or = (4a’ - Cc')/a" = (Bb* — C)[B*............ (36).

In order that the value of ¢ may be real it is necessary that
Aa®*> Bb*> Cc*; hence a >b > c, and therefore the axis of rotation
must be the least axis. The free surface is therefore an ellipsoid
about whose least axis the liquid rotates as a rigid body ; also since
the volume of the ellipsoid is constant, it follows from (36) that
when ¢ is given there is only one ellipsoid satisfying the conditions
of the problem.

From (36) we have

@' (A — B) +(a* = b)) 0 = 0,

o dx L
or a'd [:(a,'+7\.) (b"‘l"X)P —O’fo m ...... (37),
or f (@ — %" — B'6) A = N P* dh =0,

If ¢ =0 the last integral is positive, and if ¢ = ab/(a® + b°)! the
integral is negative ; hence ¢ must have some value lying between
0 and ab/(a® + b%)*.

According to Ivory’, the axes must be proportional to

¢, o/(1+AY), c(l+n'/2)
where 7 is a numerical quantity lying between 1 and 1'9414.

When a = b, Jacobi’s ellipsoid coalesces with the most oblate of
the two Maclaurin’s ellipsoids. In order to find the excentricity of
this ellipsoid, put

(a, + M)} = aev in (37) and integrate, and we shall obtain
(§+2¢"— 2 sin e=e (1 — ")} (a}+§e’)

By trial and error it can be shown that this equation has one
real root lying between 0 and 1, which is approximately equal to
‘8127, and the corresponding value of ¢*/4mp is '0934. Hence
when {*'/4mp lies between 0 and ‘0934, there are three possible
forms of the free surface, viz., the two ellipsoids of revolution and
an ellipsoid with three unequal axes; when ¢*/4mp lies between
0934 and ‘1123 the two revolutional ellipsoids are. the only
* ellipsoidal forms possible.

1 Phil. Trans, 1838. :
B. II. ' 8
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858. Case (iii). Dedekind's Ellipsoid.
In (33) put Q2+ ¢=0, and we obtain

- =y (8- 35 -

Hence the elhpsmdal boundary is stationary, but there is an
internal motion of the particles, which from (31) is determined by
the equations

2a*Q)
e
_ 20z
=— T
27,8
Whence &+ %;’, =0,
therefore z=A cos (kt + a),
and y=—Aabsin (kt +a),
where k = 2abQ/(a* + b°).

Hence if z, y,, 2, are the initial co-ordinates of the element of
liquid whose co-ordinates at time ¢ are , y, z, we obtain,
x = x, cos kt + ab™ y, sin t,
y = — a bz, sin kt + y, cos kt,
=2
In Dedekind’s ellipsoid the quantity 2ab¢/(a’+ b*)! takes the
place of ¢ in Jacobi’s ellipsoid, and it can be shown in the same
manner that we must have 0 < ¢ < ab/(a® + b*)* and that there is
only one ellipsoid satisfying the conditions. When a =& Dedekind’s
ellipsoid coalesces with the limiting Jacobian ellipsoid, and there-
fore when ¢*/4arp > *0934 Dedekind’s ellipsoid is impossible.

359. Case (iv). The Irrotational Ellipsod.
In (33) put {=0, and we obtain
Q' (@*+b) A4a’-C¢ _ Oc'—Bb’
=0 a'(a®+38b") b (3a*+b)’

The motion of the liquid is therefore irrotational, and is the
same as might be generated from rest by filling an ellipsoidal
cavity with liquid, and setting it in rotation about the axis c.
Moreover, in order that 2 may be real, we must have C¢' > Bb',
hence ¢> b, and the axis of rotation must be the mean axis. In
this case the revolutional form is evidently impossible.
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360. Case (vi). Riemann’s Ellipsoid.

In order to investigate the most general kind of steady motion
of which a liquid ellipsoid is capable, we must employ the general
equations of motion. Putting d(£a™)/dt, &c. equal to zero, we
obtain from (5) ‘

"Q'x —_ Qn —_ ‘Ql —
E@+0) n(@+a) {(a'+b)
Also 0, =0, +§E=Q, {p/("+ )+ 1}, &e. &e.
_ From (7) we have

h /o, =hjo,=h /o,

Substituting the.values of &, k,, k, in terms of w,, Q, &c., from
(6) it will be found that (38) are equivalent to the following three
equations: '

p—=2a—b'—c)u+ (' +a’)(a’+b*)—4a*=0
W=l =-c—a)pu+(@+b0) (' +c")—4'=0
w=2c—a'=b)p+ 1+ (c*+a’) —4c*=0.

These three equations cannot co-exist, hence one of the three
pairs of quantities Q,, £ &c. must be zero. Hence steady motion is
tmpossible unless the instantaneous axis of rotation lies tn a principal
plane.

861. Let us therefore suppose that 2, =£=0. From the fourth
and fifth of (18) we obtain,
v?_(2a—b—c)(2a+b—0)
v (Ra+b+c)(2a—b+c)’
w?_(2a—b—c)(2a—b+0)
w (2a+b+c)(2a+b—0c)

Let
v _ v* -8
Ra+b+c)(2a-b+c¢c) (2a—-b—c)(a+b—c) (39). .
9 o .

(2a+b+0)(2a+b—0c) (2a-b-o0)(2a—b+c)
Substituting in the first three of (18) we obtain
(4a* - b*— 3¢*) 8 + (40’ — 3b*— ") T =14 — {o/a’ ...(40).
=) T=4B= o)y,

(—=b") 8 =1C — }o/c*
' 8—2
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Solving these equations we obtain

_mpa'b'e’ [© {27» +4a' =P -¢", 1 1 dr
7= D ‘[0 (b"+x) (cﬂ +l) + a’ FA P, ............ (42).
_mp (b'—a’) [ (4’ ="+ 0" B } AdA
. S—2D (b’_ ') [o { cﬂ+x al_’_h (b’+X)P' ------ (43).
_mp(c—a’) (" (4" - b+ } AdA
T—2D(cﬁ_bl) 0 { b2+h _a!+x (0’+7\,)P' ......... (44),
where D=4a'-a*(B* + )+ b'¢" oo (45).

P'=P/abe.

362. We must now find the relations between a, b, ¢ in order
that these equations may give real values of v, v/, w, w’ and also
make o positive.

In order that (¥/v)* and (w'/w)* should be positive, it is
necessary and sufficient that -

a>%(b+c) or <}(b—c),
and there are three cases to be considered.

Case I. a>%(b+c).

In this case it is easily seen that D and both the integrals on
the right-hand sides of (43) and (44) are positive, for

D = a* {4a’ — (b + ¢)*} + be (2a° + be),
also the integral (43)
=/m{(4a’—c’)7\.+a,'(4a’+b’—c’)—b’c’}—w—x—
0 a’b!cﬁ P' ¢
Since 2a > b +¢; then 4a®*> ¢*; also
40’ + b0 —*> b +c)+ b —c*>2b (b +0),
therefore a* (4a®+ b* — ¢*) > 2a% (b + ¢) > 3b (b + ¢)* > b'c".

Hence the above integral is positive ; similarly by interchang-
ing b and ¢, it is seen that the integral on the right-hand side of
(44) is also positive. If now a increase from (b+c) to o, T
will be always positive provided b > ¢, but S will be positive only
so long as @ <b; hence in this case we must have

b>a>3}(b+c)
b>c }

b must therefore be the greatest axis, but a may be either the
mean or the least axis.
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Case II. a<}(-c), a>c
Since 2a <b—c, S must be negative and 7' positive; now
(4a’ - B)\ + a’ (40’ + ¢ - b°) = b’
is always negative, and therefore T' can never be positive unless
D (¢*—a®) is positive, which requires that D should be negative
and therefore
¢ <a* (b —4a®)/(b* —a?),

which is always possible since the right-hand side of this inequality
<a’ Also since '+ < a’+\ and 4a®> ¢, the integral on the
right-hand side of (43) will always be positive and therefore S will
be negative.

This case may be further divided into two sub-cases.
(i). The first condition may be written ¢ < b — 2a, which

requires that b > 2a, whence b must be the greatest axis. Now if
b>a(¥/3 +1), it can easily be shown that

b —2a)' > a® (b* — 4a”)/(D* - a¥),
hence the conditions may be written
b>a(v3+1) }
c< a /(b —4a’)/(b*-a”)
(ii). Butif a (y3 +1) > b > 2a, then
(b - 2a)'< @' (b° — 4a’)/(V* — a),
and the conditions become
a(W3+1)>b >2a}
c<b—2a
Case IIL a<)(b-¢), a<e.
The second condition requires that
¢ >a* (b* — 4a’)/(b* — a’),
and therefore D and T are both positive. The value of S remains
negative so0 long as a < §¢, and becomes positive when a =¢, and

therefore the integral becomes positive for some value of a which
lies between 4c and ¢. Hence the conditions in this case reduce to

a<i(-c) a<kh,
where te<k<ec.
Lastly, in order that the motion may be possible without the
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aid of an external pressure, it is necessary that o should be always
positive. The value of o may be expressed in the form

o= mpD™ f (37* +6)a® + D) P d.
0

In the first and third cases D and therefore o is always positive,
but in the second case where D is negative a further limitation is
required.

On the Stability of an Ellipsoid.

863. The question of the stability of a liquid ellipsoid has
been discussed by Sir W. Thomson’, and a very elaborate investiga-
tion of this question has been made by Poincaré®, to which the
reader must be referred for complete information on the subject.
The problem in its most general form is this. A mass of liquid is
rotating about its centre of inertia in a state of steady motion,
under the influence of its own attraction, in such a manner that
the form of the free surface is an ellipsoid, and a disturbance of
any kind is communicated to the liquid ; it is required to deter-
mine whether the resulting motion is stable or unstable.

In the present section, we shall not attempt to deal with the
problem in its most general form, but the investigation will be
confined to the consideration of the stability of a liquid ellipsoid
which in steady motion is rotating about a principal axis, and
which is subjected to a disturbance such that the free surface
in the beginning of the disturbed motion is an ellipsoid®. A
disturbance of this character may be communicated by enclosing
the liquid ellipsoid in a case which is subjected to an impulsive
couple about any diameter together with a deformation of its
surface, and is therefore equivalent to a disturbance produced by
an impulsive pressure communicated to the free surface of the
liquid.

1 Thomson and Tait, vol. 1. part mm. pp. 829 and 3383; Proc. Roy. Soc. Edin.
vol. x1. p. 610. ’

3 Acta Mathematica, vol. vir. p. 259.

3 Riemann, Gatt. Abhand. vol. 1x.; see also Proc. Lond. Math. Soc. vol. x1x,
p. 46. The investigation given in the latter paper respecting the stability of
Maclaurin’s ellipsoid is erroneous,
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'864. By (23), the potential energy of an ellipsoidal mass of
gravitating liquid of mass M and uniform of density p is

U=D- ngpabaf‘%,
[']

where P =,/(a'+\)(d*+\) (¢*+1), and D is a constant. Let R
be the radius of a sphere of equal volume, then

U=0whena=b=c=R,
therefore D =4$MrpR’,

and U = $MmpR* — 3 Mrmpabe f - (49).

Now U is evidently positive ; hence the integral must be a
maximum when a=b=c= R, and will become indefinitely small
when any one of the axes of the ellipsoid becomes infinitely
small or infinitely large.

Let 2¢ be the axis of rotation, and let
(@b | 4B’ f" d)\}
= 8 -—
E IIGM{ po i e e - 4mp bco o R (50).

By (22) and (23) E is the variable part of the energy of a mass
of liquid whose free surface is constrained to maintain a fixed
ellipsoidal form and which is rotating about the axis ¢. In steady
motion o, and {, and therefore E, are certain functions of a, b, c;
let £, be the value of Z in steady motion.

Let a disturbance (which for brevity will be called an ellipsoidal
disturbance) be communicated to the liquid by means of an im-
pulsive pressure -applied to its free surface, which is such that in
the beginning of the disturbed motion the free surface is a
slightly different ellipsoid. Then, if E,+ 8E is the energy of the
disturbed motion, we obtain by (22) and (23),

o' (B'-c)’ " o', (¢ —a’) N 4b'c’E'
b+ ¢ +a b+

+40’a”.:|+E —E,

8E'=11,,M[a’+i;’+é’+

I+

All the terms in square brackets are positive, and in the begin-
ning of the disturbed motion are small quantities ; hence, if &> K,,
these terms must remain small quantities and the free surface can
never deviate far from its form in steady motion, and the motion is
therefore stable. But, if £ < E,, the terms in square brackets may
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become a finite positive quantity, and the difference E — E, may
become a finite negative quantity, such that the difference between
the two sets of terms always remains equal to the infinitesimal
quantity 8E. When this is the case the free surface may deviate far
from its form in steady motion, and the motion may be unstable.

Hence, for the particular kind of disturbance which we are
considering, the condition of stability requires that the energy in
steady motion should be a minimum. Or, in other words, if the
steady motion is stable, it must be impossible by any kind of
ellipsoidal disturbance to abstract energy from the system.

365. Let the disturbing pressure be divided into two parts
Py Py, the former of which produces a variation of the axes and no
change in the angular momentum, whilst the latter produces no
instantaneous variation of the axes but changes the angular momen-
tum. The resultant of p, will consist of a couple @, and a single
force, which produces a translation of the whole mass of liquid,
and which it is unnecessary to consider. If the axis of this
couple lie in the principal plane, which is perpendicular to the
axis of rotation in steady motion, the energy will be evidently
increased by its application; but, if the axis of the couple does not
lie in this principal plane, the component of the couple about the
axis of rotation may diminish the energy if it acts in the opposite
direction to that of rotation, in which case the motion will be
unstable.

~ In Maclaurin’s ellipsoid the component of the couple about the
axis of rotation necessarily vanishes, since p, always passes through
the axis of rotation ; the case of Dedekind’s ellipsoid, in which the
free surface is stationary, will be considered later on.

Hence, so far as the action of p, is concerned, Jacobi’s ellipsoid,
the irrotational ellipsoid, and the ellipsoids belonging to the general
class V., including the ovary ellipsoid rotating about an equatorial
axis, but excluding Dedekind’s ellipsoid, are stable whénever the
couple component about the axis of rotation of the disturbing
pressure either vanishes or is in the same direction as the rotation;
but when this is not the case the motion may be unstable.

In the case of Dedekind’s ellipsoid, by (50),

om0 e[ B,
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4a’b’L‘ Aa'-Cc* Bb-C¢
a + b’ a! = bn ’
and the effect of a disturbing couple about the axis of rotation will
be to increase the energy by the quantity

Mo’ (a’—b")"

10 (a* +0*) °’

whence E > E,, and therefore the motion so far as this kind of
disturbance is concerned is stable.

where

366. We must now consider the disturbance p, which produces
a variation of the axes. From the last two of (18) we obtain

(a—b)w=const. =7, (a+b)'w =const.=7"...... (51).

whence, from (9),

§=“‘T hy= M (T +T) e, (52).
Also, from (6)

M 2\2 7.8
h,=m,-_—*_——b,) {(@®=b") w,+ 4a’0'¢},
Whence E = %-.M {(a b)’ + '(Wb? — 2H} ............ (53),
where H =mpabe F P

Also putting &, b, ¢ each equal to zero in the first three of (18)
and taking account of (51) we obtain

0=40Co-2 ]
" Tﬂ 1 .
(a+ b), + (a b), % Aa _—= 2—a(Aa — 00’) PN (54').
T P 1
Whence (58) becomes
E,=%(Ad’+ BY - 2Cc")—-2H
=—H—-30C .ccovuvvvrirvirvrcvnnnnnennn. (55),
since Ad* + B¥ + O =2H.

Whence E, is a finite negative quantity.
The constants 7, " express the fact that the angular momentum
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and the vorticity are unchanged during the motion ; also since the
disturbance p, does not change the angular momentum or vorticity,
these constants must have the same values as in steady motion.

Since the volume of the ellipsoid is constant, the conditions
that £ may be a minimum require that

dE cdE _
da adc
dE_E@_O ..................... (56).
db bdec

On performing the differentiations it will be found that (56)
lead to (54); hence the first conditions are satisfied.

We must now enquire whether, in the general case, £ has a
minimum value when r and 7’ are unchanged by the disturbance.

Let z=5E/M, R’=abc, z=a, y=>o, then

~ r? dr

i R, e vEE oD

Since a, b, ¢, are positive, and a is never less than b, we have to
examine the form of the surface (57) between the planes y =0,
z—y=0.

First suppose r is not zero.

When =y, z=0. If y has any finite value < or =z, then, as
@ increases from y to infinity, z diminishes, and the value of E, in
steady motion shows that z will vanish and become negative, and
when z is very large 2 is very small. Moreover, z can never become
equal to — oo for any values of # or y, and when z and y are both
very large 2 is very small, unless z — y is small.

z

0
\ /
Fig.1. y
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A general idea of the form of the surface may be obtained from
the accompanying figures. Fig. 1 isthe curve of section made by the
plane y =ma, m< 1; and Fig. 2 shows the curves of section made
by the planes zz and zy. The surface cuts the place of zy along
the curve #P, and the sheet underneath this plane gradually bends
upwards towards the plane.

It therefore follows that in this case z must have a minimum
value, which is given by (55).

367. If =0, it follows from (54) either that a = b, which is
the case of Maclaurin’s ellipsoid, or the axes of the ellipsoid must be
connected by the equation (4a*— Cc*)/a = (Bb* - Cc*)/b.

We shall now show that Maclaurin’s ellipsoid is unstable if the
excentricity exceeds a certain value.

In steady motion

7=0, 7f(a+ bl =w =}t

Let Q= Ad*-Cc", R=Bb" — C¢, then omitting the factor

2mpabc in A, B and C, the condition that Maclaurin’s ellipsoid

should be stable for an ellipsoidal disturbance, is that £ should be
a minimum in steady motion where

E= w—'fb? _oH.
Putting  E,=dE/da &c. we obtain
r= (@D dr e
B (B3 D)

where b is to be put equal to a after differentiation. Now
when a = b, Q = R and E,, = E,,, therefore

8F = } (E. 80" + 2 ,8a8b + E,, 8
=3} (E.+ E.) (3a+ 8b) + } (E.. — E,,) (50 — 8b)*.

Now o' (E,+E,)= a(g—g+§>—2c(;c—Q+2Q.
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On reduction it will be found that the right-hand side is equal
to
9¢ (1 — ")t (3 — 2¢") — (27 — 866" + 8¢*) sin™' ¢,

which is positive for all values of ¢ between zero and unity. But

s dQ dQ\
@ Eu-E)=(g~ 7)o~

=e¢ (1 — &) (3 + 4¢) — (3 + 2¢* — 4¢*) sin"e... (58)

on reduction. The right-hand side is positive when ¢ =0, and
negative when ¢ =1, whence Maclaurin’s ellipsoid becomes unstable
when the excentricity exceeds the root of the equation obtained by
equating the right-hand side of (58) to zero.

The equation determining the excentricity of the revolutional
ellipsoid which coincides with the limiting Jacobian ellipsoid has
been found in § 857, and on comparing it with (58), it will be seen
that the excentricity of this ellipsoid is somewhat less than the
ellipsoid which is unstable.

This result was first obtained by Riemann.

In the last edition of Thomson and Tait's Natural Philosophy,
vol. L part IL p. 333, it is stated that Maclaurin’s ellipsoid is
stable or unstable, according as the excentricity is less or greater
than the ellipsoid which coalesces with the limiting Jacobian
ellipsoid ; ie. according as e < or > '8127. Unfortunately no proof
of this statement is given, but if it is correct, the disturbance
which produces instability cannot be an ellipsoidal disturbance,
but must be one of a more general character.

368. Poincaré® has shown that when a mass of liquid is
rotating about a fixed axis as a rigid body, the problem of deter-
mining the small oscillations is reducible to the solution of a single
equation.

Let the axis of rotation in steady motion be the axis of 2, and
let the axes of z and y be any two perpendicular axes which are
rotating with angular velocity w. Then if the disturbed motion be
referred to the same axes, the equations of motion are

ou dQ v _4Q ow_dQ
%" de BT Tdy ot T dz

1 Gott. Abhand. vol. 1x. § 9.
3 Acta Math, vol. vi1. p, 356.
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where 0/ot = d/dt + Ud/dz + Vd/dz + Wd/dz,

Q=—plp+7V';
U, V, W being the velocities of the liquid relative to the moving
axes, and V" is the potential. Also

U=utoy, V=v—wz, W=w.

Since the liquid is rotating as a rigid body in steady motion,
U, V, and W are all zero, hence in the disturbed motion U, V, W
are all small quantities; if therefore we put

¥ =Q+ 1o’ (@ + )

the equations of disturbed motion are

9yt L oneoty,
The equation of continuity is
w v,
whence Vg = 20 (‘313/7 i:)
3 w)=27 7 (d"' +207) ~20 7 (‘%’ - 27),
Hence F7 (V’\[r) =— 4o’ g;’; ,

which is Poincaré’s equation.

If we assume that the time enters into 4+ in the form of the
factor ¢, this becomes
"y 4_“’ ¥ _
Putting z = 2'y/ (1 — 4w*/n°), this becomes

i S .
Tt &

The problem is therefore reduced to finding a solution of
Laplace’s equation within the surface which is derived from the
original surface by writing 7/y/(1 — 4e*/n*) for 2.
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The solution of this equation subject to the boundary conditions
will lead to an equation for determining n, which will show
whether the motion is stable or unstable.

The oscillations of an elliptic cylinder' and of an elastic
spherical shell containing liquid’, have been worked out by this
method by Mr Love.

EXAMPLES.

1. An infinite cylindrical mass of liquid is rotating about its
axis with angular velocity Q + ¢, under the influence of its own
attraction, where { is the molecular rotation. Prove that a possible
form of the free surface is an elliptic cylinder, and that if ¢ and b
be the semi-axes of the cross section, -

o, 4’8 dwpab
(ﬂ + g) + (as + bs): ‘(a_'_ b)s'

2. In the last example prove that the paths of the particles of
liquid relatively to the axes of the cross section are in general
pericycloids, which (i) when ¢(a* 4 b°) = Q (a® — ") are epicycloids;
(ii) when Q + £ =0 are ellipses; (iii) when 2 =0 or (Q +§) (a* +b*)
=+ 2ab) are circles.

3. A spheroidal shell whose equatorial and polar axes are
2a and 2¢, and whose mass may be neglected, is filled with liquid
and is rotating about its centre of inertia. The motion of the
liquid at every instant is such that it could be instantaneously
generated by means of the first two operations explained in § 342,
Prove that

ger=L-%%,
sLqio gy @t+e)ye
‘Q'l +Q’s —M+2G’(a’—c’)’

%, 8
QxE+Q:’7=N+(a-;_‘ci—')r’

where L, M, N are constants depending on the initial motion.

Prove also that ¢ can be expressed in terms of the time in
terms of elliptic functions, except when LM = N, or ¢ = 3a, when it
is expressible by means of circular functions.

1 Quart. Journ. voL xxmr. p. 158.
3 Proc. Lond. Math. Soc. vol. xIx.
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4. In the case of Jacobi’s ellipsoid, prove that the mean
pressure throughout the liquid is § of the pressure at the centre of
the ellipsoid; and that if the equation of the free surface is
(z/a)® + (y/b) + (¢/c)) =1, and M is the mass of the liquid, the
kinetic energy of the system is

%M (Ad* + BY — 20¢°).

5. In the case of Maclaurin’s spheroid, prove that any given
mass of the liquid may be annihilated without disturbing the
motion of the rest, provided the annihilated mass is bounded by
the external surface and either of the two other spheroids, but that
a similar theorem does not hold for laws of attraction other than
that of the inverse square of the distance.

6. Prove that if a rigid ellipsoidal shell be filled with two
homogeneous gravitating liquids of different densities, the denser
liquid will form a nucleus in the shape of an ellipsoid ; and that if
the shell be made to revolve with constant angular velocity about
any given fixed axis, a possible form of the nucleus when the
liquids are in relative equilibrium will be an ellipsoid not co-axial
with the external surface.

7. A rigid shell in the form of an ellipsoid of revolution is
filled with two homogeneous gravitating liquids of different densities
which do not mix, and the whole system is rotating uniformly in
relative equilibrium round the axis of the shell. Prove that a
possible form of the surface of separation is a spheroid, and find the
equation connecting the excentricity with the angular velocity.

8. A mass of attracting liquid which is at rest, is enclosed in
an ellipsoidal case. Prove that if the case be removed the liquid
will move so as always to preserve the ellipsoidal form.

In the case of a spheroid, prove that if a be the axis of figure,

.o _ 8m’a’

@ =i @~
where () = f: (—t}—_‘%, Q,is the value of  in one position
of rest, and r is the radius of the sphere whose volume is equal to
that of the liquid.

Hence show that if the two extreme values of a be r cmc’:ﬁ,
and r sin§0, the relation between 6 and ¢ will be

T sin*6 sm¢
(§_9>cosﬂ ¢lgcot§¢
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9. In Maclaurin’s spheroid, find the ellipticity e in terms of
the density p and the angular velocity @ when the free surface is
nearly spherical and show that the whole pressure on an equatorial
plane is approxlmately equal to (5 — 6¢) mp’a*/15 astronomical
units of force, where a is the equatorial radius,

10. In Jacobi’s ellipsoid prove that gravity on the surface
is inversely proportional to the perpendicular on to the tangent
plane, and that the total stress across any central section is pro-
portional to the area of the section.

11. If two concentric approximately spherical masses of fluid
of densities (astronomical) p and p + p’, the denser being inside, be
rotating round an axis with angular velocity », and if a, @’ be the
mean radii of the outer and inner surfaces, and if the equations of
the surfaces be r=a(1+07), ¥ =a'(1 + '), prove that o, o’ are
given by the equations

30’ +p) o’ — kpo = {3p +p' (a'/a)} o —§p (¢'[a)’d’ =§n'n™*(} — cos'd).

12. Prove that if a thin case in the form of an ellipsoid of
revolution be filled with liquid which is rotating as if rigid about
its axis, the motion is unstable, if the length of the polar axis
lies between one and three times the length of the equatorial axis.

13. A quantity of liquid of density p is enclosed in a case,
which may be either an oblate or prolate spheroid, and is rotating
about its polar axis like a rigid body with angular velocity &
Prove that if the case be removed, it will be impossible for the free
surface to retain the spheroidal form unless initially ¢*/2mp < 1.
Prove also that if 2c¢ be the length of the polar axis, the free
surface will cease to be spheroidal, if at any period of the subsequent
. motion o -

2—77'P >1+ W .

14. A liquid spheroid of small ellipticity e is rotating about
its axis like a rigid body ; prove that the angular velocity is equal

to 4 (me/15)".

15. \Assummg that Saturn is a spheroid of small ellipticity e,
and that it was originally liquid, investigate the equation

Ikt ak?
e —t)" M’
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for determining the ellipticity, due partly to its own rotation o,
and partly to the disturbance caused by its ring, which is supposed
to be a flat concentric circular disec, of uniform thickness and
density and lying in the plane of the equator: where M is the
mass of Saturn, % its mean radius; m the mass of the ring,c+ b
its bounding radii, and ¢ is large compared with £.

Prove also that the value of gravity at co-latitude 6, is to
equatorial gravity in the ratio
1+ecos’d: 1.

16. Prove that Dedekind’s ellipsoid may be derived from
Jacobi’s ellipsoid by supposing the liquid enclosed in a case, and
then imparting to the case an equal and opposite angular velocity ;
and show that the impulsive couple which must be applied to the
case, is equal to

1M (@ — B/ + B).

17. In the irrotational ellipsoid, prove that if the liquid be
suddenly solidified, the loss of energy is equal to
MO’ (o’ — )/ (a® + )",
where Q is the angular velocity of the free surface before solidifi-
cation.

18. Obtain the equations for determining the small oscillations
of the ellipsoids included in case v, when the position of the axis
of rotation is unaffected by the disturbance which is supposed to be
ellipsoidal ; and prove that in the case of Maclaurin’s ellipsoid, the
period T of oscillation is determined by the equation

{4’/ - E,, + E,} {1 + 2¢/a”) 47*/T* - E,, - E,} =0,
where E is the variable part of the whole energy, and
E, =dE/dd’, &c.



CHAPTER XVL

ON THE STEADY MOTION OF TWO MASSES OF ROTATING
LIQUID. >

869. WHEN a mass of liquid is rotating as a rigid body about
a fixed axis under the influence of its own attraction, the condition
that the motion should be steady and that the free surface should
preserve an invariable form, is obtained directly from the considera-
tion that the reversed effective forces together with the forces
arising from the mutual attractions of the different portions of
liquid, must form a system in statical equilibrium.

Let the axis of rotation be the axis of z; V, p, @, p the attraction®

potential, pressure, angular velocity and the density of the liquid.
The equation for determining the hydrostatic pressure p gives

dp=p {(g+ w’a:) dz + (‘fi—:’r+ w’y) dy + ‘fi:’dz} ;

whence if p be constant, we obtain

plp + const. = V + 3’ (2 + o).

At the free surface p =0, whence the equation of the free
surface is
V+ 30’ (2" + ¥°) =coust.....ccevenrunnnnnn., (1).

370. The value of V cannot be determined without knowing
the form of the free surface. If any particular form of the free
surface be assumed, and the resulting value of V is substituted in
(1), it usually happens that it is impossible to satisfy (1); hence
the problem in its most general form is one which cannot be solved

1 Since V is the attraction potential, dV/dz = force in the direction of z.
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by any direct methed. It is however sometimes possible to obtain
an approximate solution, in which the free surface differs slightly
from some surface whose form is known; and we shall therefore
proceed to investigate the steady motion of two approximately
spherical masses of liquid which revolve like rigid bodies about a
fixed axis.

The present investigation is taken from a paper by Prof
G. H. Darwin'.

371. We must first find the potential of a homogeneous mass
of gravitating matter of unit density whose free surface is approxi-
mately spherical.

Let the equation of the bounding surface be
r=a(l+22.Y)cciiniiininniiinnnnnns (2),

where Y is a spherical surface harmonic of degree =, and a, is a
small quantity whose squares and products may be neglected.

If V, V' be the potentials at an external and internal point
respectively, we may assume '
V=¢ma’fr +‘2:°A,,- (720 Ml T (3),
V== 3mrt + 3 4, ()a) Voo (4),
for these values evidently satisfy the equations V'V =0 and
VV' + 4 = 0 respestively. The conditions to be satisfied at the

surface of the solid are
V=V 4consb. ...coooevererinininnnnn. (),

dV/dr =adV'[dr...cccveivvennniiniinniennnn. (6).

Since the A’s and A”s are small quantities of the:order a, we
may in the small terms put » =a, but in the first term we must
give to  its full value from (2).

Substituting in (6) we obtain
$ma*Sa ¥, ~2(n+1)AY, =—4na*Za Y, +2, 4.7,
whence equating coefficients of ¥, we obtain
dma’a, =(n+1) A4, +nd, .
Similarly from (5) we obtain,
A, =4,.

L «On the Figures of Equilibrium of Rotating Masses of Fluid,” Phil. Trans.
1887, p. 397.

9—2
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4rra’ o2 0 Y, fa\*"

Whence V= 3r + 4ma ﬁ: m (;) ............... (7),
, ©al (r\"

V== gt 4 dma ¥, e (&) ceeeeeeenro(8).

872. Let us now suppose that there are two masses of liquid
whose free surfaces are approximately spheres, and whose centres

are o and O.
/y

X — [0

.
/; X

4

Let there be two sets of rectangular axes whose origins are o
and O respectively, and let the axis of 2 be measured from o to O,
and that of Z from O to 0. Let Oo=c; a, 4 the radii of the
spheres whose centres are o and O respectively. Let Py be an
associated function whose origin is O and whose axis is 0Z, and
let p7 be a similar function when the origin is at o0 and the axis is
oz. Let the axis of rotation be a line parallel to oz drawn through
some point on Oo whose distances from O and o are D and d
respectively. If () be the potential of the centrifugal forces, we

have
Q=}0'(y'+ 2"+ d' — 2d2).

Now if 7, cos™ u, ¢ be polar coordinates referred to o as origin,
P =t p,(8) = B = 1), p (8) =B (1—4),
whence
O =} (d" — 2drp, + §7°p, + §r* — §r°p,’ cos 2¢).

Let us now put w,="p,, w, = 7p,? cos 2, so that w,, w, are
solid harmonics of positive degree, and we obtain

Q =}’ (d'—2dw, + dw, + " — w)..eeeneee. ).
Similarly the value of Q referred to the other origin O is
Q=30 (D'-2DW, + W, +3R' -} W))......... (10).
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373. It will hereafter be necessary to employ the transference
formulae given in Chapter XL § 227. Writing 7 — @ for 6 in these
formulae, and remembering that P} {cos (7 — 8)} = (=)*™ Py (cos 6),
and multiplying both sides of each equation by cos m¢, the
formulae become

M ow, T (m+m+s)! W,
(n—m)!—r,—,%—'f.o _——(2m+s)l —OW ...... (11),

W, 3 (n+m+38)! w,,,

- | == 3 > —_~f 8 =2 ..
('n’ m) sl s=0 (2m+s)! el

874. Let V, v be the potentials at an external point of the
solids O, o respectively; and let V, v be divided into three parts
vV, V, V,and v, v, v, respectively. By (1), the condition that the
free surfaces of the two masses of liquid should be equipotential
surfaces, is that the equation

Vi+Vo+ V4o, +v,+ v+ Q =const......... (13),

should be satisfied at each of the free surfaces. Since the free
surfaces are approximately spherical, each of the three ¢’s will be
of the form (7), and each of the three ¥’s will be of a similar form
with A and R written for @ and ». Expressing the series (7) in
terms of solid harmonics of positive degree instead of surface
harmonics, it follows that (13) will be satisfied provided the
following conditions are fulfilled.

(i) V, must consist of a series of zonal solid harmonics of the
form (7) referred to the origin O, and v, must consist of a similar
series referred to the origin o, such that when the expression
V, + v, is transformed by means of (11) and (12) into two separate
series of zonal solid harmonics referred to the two origins O and o
respectively, the coefficients of all the harmonics must vanish
except those of W, and w,.

(i) V,+ v, must consist of two similar series of harmonics,
such that when V,+ v, is transformed into two separate series of
zonal solid harmonics referred to O and o respectively, all the
coefficients must vanish except those of W, W, w, w, and the
coefficients of W, w, in ¥, +v, and the coefficients of W,, w, in
V.+ V,+v, +v, must be determined so as to annul the terms
involving these quantities in ().

(iii) V,+ v, must consist of two series of tesseral solid har-
monics ,W,, w,, such that when V,+v, is transformed into two
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separate series referred to O and o respeatively, all the coefficients
must vanish except those of ,W,, ,w,, which must be determined so
as to annul the terms involvmg these quantities in ().

The terms R® and 7" in' ' need not be considered, fur since the
corresponding forces are symmetrical about each origin, they pro-
duce no departure from sphericity.

When we have determined the three quantities V, +v,, V,+ v,
V,+v, and the form of the boundary corresponding to each, the
final result will be obtained by addition:

375. We shall now consider the potential V, +v,.
Let the equations of the two surfaces be

’_‘=1.+(;;4)"‘“?£+_1 (9) R0, e (14);

a n=g 2n—2\c
g-H(A)’::Z:”f;(A) H.R*W, ......(15),

where the A’s and H’s are unknown coefficients whose values are to
be determined. Putting I'=A%/¢", y=a’/c", it appears from (7)
and (8) that

ppp— ((;IQ) + 2"0‘":'3;: k"kl (“)” (_)"" ke (16),

ot ) e (A BTy

Putting 2 =0 in (12), and transferring to o by the resulting
formula, we obtain
4 A%kz® g ( >'= Wy
¢/ a*
+ 2ma® (é)’ "s® H,.l""‘”“g" (k +n)! (‘f)k'ﬂ',
¢ \¢/) ucg n—1 3 k!n!\c/ a*

Vi= 3¢ ko

the value of v, + V| is

o ()55 [0, (0203

a\"*wy "5 (k+n)! T
+g( ) FE TR R 1H,] ...... (18).

This quantity is to vanish when r has the value given by (14)
for all values of k except k=1. Since the squares and products
of small quantities are to be neglected, we may put r=a in the
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term in square brackets, but in the first term we must give to
a/r its full value ; whence equating the coefficient of w; to zero
we obtain

% +1 3hs e (k) T
~ok_gMtop_s 2“””3(),,2, TN TS R

8p=0wm ] 1
Therefore Ih;=1+$ (%) 22 (:;T]f)' - %H. ......... (19),

db "
and by symmetry s”_w @ral
H,=1+§( ) By v (20).

e n! 8!l m—1 "

For the purpose of obtaining an approximate solution it will
be sufficient to calculate the values of the H’s and k’s as far as ¢™®
only; we shall therefore require only the first terms of the two
series, and we thus obtain

by =1 +§( ) (’°+1)2———(T'“+—2) e (@1),
H, —1+§( ) ("“;(’”2) e (22).

Returning now to (18) we must determine the portion of the
potential which involves harmonics of the first degree. From (16)
it is seen that at the surface of o, v, contributes nothing; whence
by (17) the portion of the potential is

4 A® +1 .,
u =4 [1+g()”_2:_lr~ H] Wyene. (28),
and when the origin is at O,
4 Ao+,
U,_ch?[ug(?) ,Eg:—l" 'h,] W,......(24).

376. We must now consider the potential V, + v, due to the
rotational terms, which are equal to }’W, or jw’w, according as
the origin is at O or o.

By Chapter XV., Ex. 14, if a spheroid of small ellipticity e is
rotating with angular velocity w, then e =15w’/167 ; let us there-
fore assume for the equations of the two masses of liquid
r_ w, A"""’°2n+l(_ . -

—l+§e-77+( ) b c) Lrrw, ...... (23),

a ”3271—2

B (I (4 B
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By (7) the potential due to the inequality jJer™w, in (23) is
equal to fwea*w,/r", whence proceeding as before, the potential v,
due to the whole sphere a and its inequalities is

o, = gma’(2) + pyen (r) 2’;‘4’:5: L (‘—Z—)‘ (‘,'_)“',ﬂ; . A2T),

and the potential V' due to the whole sphere A and its inequalities
can be at once written down by symmetry. By (12) the value of
V., when transferred to o is

ALl ey A ) (k4w
Vi T athmes 2 — g ——
L 2reA s LI e (k4 n) g eveerseeree e 28).

c a=g N— lk—g k! n! ck

Substituting the value of a/r from (25) in the first term of
(27), we find that the value at the surface of the portion involving
¢, added to the second term of (27)

=—§mew, + fymwew, = — fwew, = — jo’w,
This annuls the term jo'w, in the rotation potential; hence
the value at a of the potential due to the inequalities of the two

spheres minus the above mentioned term and the outstanding
potentials of the first degree is,

4 AP (2n+ 1)L w, 21rA"'=z"° I, w,

Vi+o=— 3 4=z (2n-—-2)c" ¢ azn-—lg,
+ 2;';:3"? (n+1) (n+2)c™w,
)R TN e
whence
::*;l. +-ﬂ,e( )(n+1)(n+2)
() e
or z_ﬁ,e( ) (n+l)(n+2)+g() '°l;::rkr*-‘11,
Similarly
=i () nern+i(5) 300G A
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whence neglecting higher powers than ¢™ we obtain

A 8
= e (E) TR NC T ) U (29),
a 2
L, =4 (E) B +1) (+2)eeerennnnn. (30).
The outstanding potentials of the first degree are
u, = gmwed’w,/c!, and U, = gmwea’W Jc'......... (31).

877. Let us write Q,, g, for ,W,, ,w,; and we have lastly to
find the potential due to the rotational terms — #0', and — {; ©*Q,
in Q.

Let the equation of the free surfaces be

T o1l (‘:)'E: p ( )’mm_ e (32),
Rl Q_ & A)’ :?: n+l (‘.j_) M.QE™...(33).

By (7) the potential due to the inequality — }eq,/r* in (32) is
— 2mwea’q,/157°; whence the potential v, of the mass o and its
inequalities is

a\® 27wA’nT® (a\* fa\"" mpg,
v, =gma’ () T57e 9*() o s (c) (;) m—1)r &Y
Whence at the surface, the value of the potential of the
inequalities is
v, = $mwa’ {%eq,/a,’+( )

and since $mreq, — Fmeq, = {zvreq, =o'y,
the term — 3eq,/r* in (32) annuls the rotational term (4w, in Q.

The value referred to O of the potential of the inequalities of 4
is

.

"‘2'” 2n + 1 am.gq

il - Ameg,..(39),

n=2 2n — (4

_ A 1] 2”.A!a8 k= M.Pk-l chl*l
Vom= e (3) - T T BT e

and the value of this at the surface of o is

n=wo
— fmeA’c” ? g

2w A%z MiT* 1 nz> k4! 9,
T S T . ke ¢80,
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whence equating coefficients from (34), (35):and (36) we obtain

2n+1 3m A\*
n-1m 2n— 7161“( )

a\* ke k+n! MJIF
-4 (E) e Fo2i a2l k=1 O
Whence
(4 “’- k+n! !
m“*‘“e( ) ‘?( ) Rotl e Yl e Rl
Similarly.
Bem g4 k! ¥y
My = e ) +4 ( ) E e
Whence neglecting (a/c)* and (4/c)® we obtain
m, = fge (A/0)', M, ={se(alc)............ 37).

878. In order to determine the angular velocity, we must
equate to zero thie sum of the harmonic terms of the first degree in
{ in (23) and (31); we thus obtain

—w'd + 4w A’/ + gmed’/c* =0,
or —o'd + §wd’/c + §4°*/c* = 0.
Similarly  —'D + $mwa’/c* + {a’e*/c' = 0.
Adding and remembering that D + d= ¢, we obtain
o' {1 -3 (4’ +a°)/d} = §m (4* + &)/,
and since we neglect powers above (a/c)’ we obtain
o' =4 (A*+ @)/ ereriniennn, (88).

379. The object. of the problem which we are considering is,
to obtain the equations of the free. surfaces of the two masses of
liquid ; this will be effected by adding the inequalities in equations
(14), (25) and (32) to unity, and substituting the values of &, I,,
and m, from (21), (29) and (37).

This will give us the equation of the boundary of the mass o.

Similarly by adding equations (15), (26) and (33) and substi-
tuting the values of H,, L, and M, from (22), (30) and (37), we
shall obtain the form of the free surface of the mass O. We shall
thus obtain

r AN (, (a\ w, a\* w, a\*w,
= theu -+ (3) {% ) w+a() 5+ ) ?}»

\C
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which expressed in terms of surface harmonics is

3 2
Lotejean-plon2d) + (5) fin+ 1 (2 n+5 () n} 00
Similarly
3 $
B 144e(@P,—Ploos2g) + © {gP, +3 (‘g) P4} (%‘) P‘}(«LO).

380. Prof. Darwin has entered into an elaborate series of
numerical calculations for the purpose of ascertaining the forms of
the two figures when they are in close proximity with one another;
and has computed and drawn the figures which are shown in the
accompanying diagrams.

Figures 1 and 2 show the form of the sections of the figures
through and perpendicular to the axis of rotation when the masses
are equal and nearly in contact, the constants being chosen so that
A=a, cla=2646, »*/4w ="038, and h the moment of momentum
oc ‘472. It will be observed that the section through the axis of
rotation is considerably more elongated than the section perpen-
dicular to that axis. :

Figures 3 and 4 are particularly interesting. Here the masses
are equal and c/a = 2449, o'/4m ="0494, h o "482, and the masses
partially overlap. Although two portions of matter cannot actually
overlap so as to occupy the same portion of space, yet the continuity
of figures of equilibrium leads to the conclusion that the two
masses in this case constitute a single mass of liquid. The probable
form of the free surface is shown by the dotted line connecting
the two masses. )

It will be observed that both the angular velocity and the
moment of momentum of the system is greater in this case than in
the preceding; it is therefore to be inferred that for a properly
chosen moment of momentum, there exists a dumb-bell figure
of equilibrium, and that when the ratio of the square of the
angular velocity to the density is less than a certain quantity
which lies between 47 x 0494 and 47 % ‘038, a single figure of
equilibrium becomes impossible and the mass divides into two.

Figures 5 and 6 show the forms of the surfaces when the
masses are unequal, the ratio of the larger mass to the smaller
being 27. The free surfaces consist of two detached masses, and it
is remarkable that the smaller mass has a very distinct furrow,
which indicates a tendency for it to break up into two separate
masses.
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381. Poincaré has shown by a difficult analytical process that
when Jacobi’s ellipsoid becomes moderately elongated, instability
sets in by a furrowing of the ellipsoid along a line which lies in a
plane perpendicular to the longest axis; and it is to be noticed
that this furrow is not symmetrical with respect to the two ends.
Assuming the correctness of this result, it would appear that there
is a tendency to form a dumb-bell figure with two unequal bulbs.

MISCELLANEOUS EXAMPLES.

1. A vessel in the form of a regular polyhedron is filled with
fluid, and revolves with given angular velocity around a vertical
axis passing through its centre of gravity; if P denote the whole
pressure on the surface of the vessel. S the whole surface, and II
the pressure at the centre of gravity, prove that P —IIS is
constant for every vertical axis.

2. Prove that the relative stream lines for liquid bounded by
the hyperbolic cylinders z (z — y) = a*, y ( + y) =0* are the quartic
curves,

{#(z—y) —a’} {y (x+ y) — b"} =const.

3. A right circular cylinder whose section is r/a =1+ f(6)
where both f(6) and f* () are very small, is surrounded by an
infinite liquid. If the cylinder have an angular velocity @ about
its axis, prove that the velocity potential at any point of the
liquid is '

_dor f(a)sin (a — 0) da

T Jo *—2arcos(x—0)+ a*’

4. A circular cylinder of radius @ moves along the axis of z
with velocity — 1. Prove that the direction of motion of a particle
of the fluid with respect to still water, is a tangent to the circle
drawn through the particle and touching the axis of z at the point
where the axis of the cylinder at the instant cuts this axis; and
also that if p is the radius of curvature of the path of the particle
relative to still water

a*=4p (y - 1b),
where b is a constant.

5. The resolved attractions of a body symmetrical about the
axis of z are f (2, w) and F (2, w) respectively perpendicular and
parallel to that axis. The equation of a solid of revolution is
wf (z,w)=aw" +b, where a and b are constants. Prove that if
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this solid be made to move parallel to its axis in an infinite liquid,
the stream lines are given by equating the- left-hand side of this
equation to a constant, and the velocity potential is F (2, w)
multiplied by a constant.

When the moving solid is formed by two spheres intersecting
at an angle =/n, find the velocity potential and current function
by choosing as the attracting body a series of 2n—1 particles,
situated on the line joining the centres so that each is the image
of the two adjacent particles, having their masses proportional to
the cubes of their distances from any point on the intersection of
the spheres, and being alternately attractive and repulsive.

6. Fluid moves irrotationally within an ellipsoidal cavity
whose semi-axes are a, b, ¢ in a vessel which turns freely about the
axis of ¢. Show that the locus of points at which the pressure is
the same as that at the centre is two planes, and that the pressure
at any other point exceeds the pressure at the centre, by a quantity
proportional to the product of its distances from these planes.
Show also that each particle of fluid returns to the same ,place in
the vessel after a time 7'(a® + 4°)/2ab, where T is the time of a
complete revolution of the vessel.

Find the place from which a drop of fluid may be removed
without disturbing the motion.

Let an internal ellipsoid be described touching the cavity at the
extremities of the axis of rotation, and having all its sections
perpendicular to this axis similar to those of the cavity. If the
mass of fluid within this ellipsoid be -suddenly solidified and

rigidly connected with the rotating vessel, find what change in the
motion is produced.

7. Liquid is contained in a thin rigid ellipsoidal case, which is
held in any position in contact with a smooth horizontal -plane; if
it is released, prove that the:pressure on the table is instantaneously
reduced in the ratio 1 : 1 4 P, where

Pp* = m™n’ (b* + ¢*) + n'F (¢ + o) + Pm® (a* + B),
aud p is the central perpendicular on the plane at striking, and
l, m, n are its direction cosines referred to the principal axes of the
ellipsoid.
‘Prove also that if it is dropped on to the plane, and has no

rotation at striking, the kinetic energy is reduced by the impact in
the ration P : 1+ P,



CHAPTER XVIL

ON LIQUID WAVES.

382. THE different kinds of liquid waves may be classified as
follows' :

I Oscillatory Waves, which are the class of waves most
commonly met with, and which consist of an elevation together
with a companion hollow. They always appear in groups, and
may either be stationary elevations or depressions, as in the case of
a stream of running water, or may be propagated along the surface
as at sea.

II. The Wave of Translation or Solitary Wave, which consists
of a single wave travelling along the surface of the liquid. Its
form may either be that of a solitary elevation or a solitary hollow,
the former being called the positive wave, and the latter the
negative wave. There is however an important difference between
the two waves, since the positive wave possesses considerable
permanence of form, being capable of propagation to great distances
without suffering much degradation ; whilst the negative wave is
incapable of travelling any considerable distance without being
broken up.

III. Capillary Waves, which are mainly i)roduced by the
surface tension of the liquid, and whose effect is insensible except
near the surface of the liquid.

IV. Sound Waves, which in the case of liquids are due to the
very slight changes which the density of a liquid under pressure
experiences. They are insensible to sight, and the consideration
of their properties belongs to the theory of sound rather than to
hydrodynamics. ' .

1 Scott Russell, Brit. Assoc. Rep. on Waves, 1842—38.
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The mathematical difficulties of the subject are so great, that
no complete solution of any problem has as yet been obtained
except the trochoidal waves considered in § 388, which were first
discovered by Gerstner' in 1802, and afterwards independently by
Rankine® in 1862; and we are therefore compelled to resort to
approximate methods, which depend upon the assumption that the
motion is sufficiently slow for it to be permissible to neglect the
terms involving the squares and products of the velocities. The
problem thus consists of (i) the determination of a velocity
potential which satisfies Laplace’s equation ; (ii) the determination
of the boundary conditions to be satisfied at the fized boundaries of
the liquid ; (iii) the determination of the conditions to be satisfied in
order that the free surface should be a surface of constant pressure,
or in the case of two liquids which are in contact, that there
should be no discontinuity of pressure at the surface of separation.

SEctioN I

Oscillatory Waves.

383. We shall first consider the waves propagated in a liquid
of uniform depth k under the action of gravity.

Let the plane of the undisturbed surface be the plane of zy, let
the axis of # be measured in the direction of propagation of the
waves, and let the axis of z be measured vertically upwards.

Since the motion is supposed to be irrotational, the velocity
potential satisfies the equation

Vi =0..ccceiiuiiiririnrrinrnannnns (1).
At the bottom of the liquid where z=—h,
dp/dz=0....ccccooviiiiiiiiiiniinnin (2)
The pressure is determined by the equation
plo+gs+d+igi=const........ooooiiin (3),
where g is the resultant velocity. At the free surface 9p/ot =0, or
%I—:+u%+v3—s+w%2=0 ............... (4).

1 Theorie der Wellen, Abhand. Kisn. Bshmischen Gesel. Wiss. 1802.
2 Phil. Trans. 1863.

B. II. 10
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Also if 9 be the elevation of the free surface above the undis-
turbed surface, we must have

7 =d¢/dz, when z=mn.........cc..cocuueis (5).

So far our equations have been exact; we shall now assume
that the motion is so slow that the squares and products of the
velocities may be neglected. Substituting the value of p from (3)
in (4) and neglecting small quantities of the second order we
obtain

d¢é

dt" +gd_

when z=0. Since we are dealing with wave motion, ¢ must be
an harmonic function of the time, whence if ! be the length of the
simple equivalent pendulum

d’d>
Lop t9%=0,
and therefore ldp/dz=¢p, when 2=0.............cu.u.en. (6).

- Waves in Rectangular Canals.

384. ‘When the motion is in two dimensions, we may suppose
that the liquid is bounded by two parallel planes, which are at
right angles to the crests of the waves. Hence the motion will be
the same as that of waves propagated along a canal whose cross
section is a rectangle.

Let A be the length of the waves, U the velocity of propagation,
h the depth of the canal. Since the motion is in two dimensions,
we may assume
¢ = f (2) cos (mz — nt),
where m =2mw/\, n =27 U\, n*=g/l. Substituting this value of ¢
in (1) we obtain

&f_
Jz{— f=0

the solution of which is
f=P cosh mz + Q sinh maz.
Equations (2) and (6) require that
P sinh mh = Q cosh mh
P =mlQ,
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whence ¢ = A cosh m (z + h) cos (mz —nt)
ml = coth mh,
and U =n'[nd = g/m’l
=g7\./27r .tanh 2mh/N ...l (),
which determines the velocity of propagation.

Putting 4mh/\ = u, we obtain

d s _ _ -1
I‘logU = — ™ + cosech g,

which is positive or negative, u being supposed positive, according
as
p>or<sinhp>or< (u+p'/3! +...... ),

and is therefore negative. Hence U decreases as u and therefore
m increases, and therefore (7) cannot be satisfied for a given value
of U by more than one value of m. Hence there is only one wave
length which corresponds to a given velocity of propagation ; also
the velocity of propagation diminishes as the wave length increases.

385. When A/A is small, tanb 27h/\ = 2mh/\, and

which determines the velocity of propa.oa.tmn of long waves in
shallow water.

When h/x is large tanh 2wh/A =1, and

which determines the velocity of propagation of deep sea waves.

386. At the free surface z=17, where 7 is the elevation;
whence substituting the value of ¢ in (5) and suitably choosing
the origin we obtain

7 = — Amn™ sinh mh sin (mz — nt).

Let (z, z) be the coordinates of an element of liquid when
undisturbed, (&, &) its horizontal and vertical displacements, also
let e’ =x+§ 2’=2+¢; then

£ =d¢/da’ = — Am cosh m (' + k) sin (mz’ — nt)

{=d¢/dz’= Amsinhm (2 + k) cos (ma’ —nt).
10—2
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Since the displacement is small we may put 2=2', 2=2" as a
first approximation, and we obtain
&= —acosh m (z + k) cos (mz — nt)
= — a 8inh m (z + &) sin (mz — nt),
where Am/n=a; whence the elements of liquid describe the
ellipse
£/cosh®m (z + &) + ’/sinh*m (2 + k) = a".

387. When the depth of the liquid is very great we may put
h=o, and the hyperbolic functions must be replaced by expo-
nential ones; we shall thus obtain

¢= Ae™ cos (mzx —nt)
7 = — Amn™ sin (mz — nt),
and the elements of liquid will describe the circles

£+ =(dm/ny &
We shall consider the problem of deep sea waves at greater
length in § 408.

Gerstner's Trochordal Waves.

388. It was shown by Gerstner in 1802 and was rediscovered
by Rankine, that there exists a certain form of trochoidal waves,
which can be expressed in finite terms without resorting to methods
of approximation.

Let the motion of the liquid be given by the equations

e=a+k” e'“sink(a+°‘)} (10)
_Z=b+k-xe_”cosk(a+ot) eeecsesvcces s y

where k& and ¢ are absolute constants, and @ and b are functions of
the initial coordinates of the element of liquid whose coordinates
at time ¢ are (z, y).

The conditions of continuity require that the area of any
elementary rectangle bounded by the curves a, b, a + 8a, b + 8b,
should be constant throughout the motion, this requires that

d (z, 2)
d(a, b)

=4,
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where A is a quantity which is independent of «, z or &. From
(10) we obtain

d@2)  _u .

dab=¢ b

hence the conditions of continuity are satisfied.

The Lagrangian equations of motion are

d .dx .dz
daPlp+92)=—é 5 — %,

d dxr .dz
7 (p/p+92)= il R
which by (10) become

g—a (plp +92) = kc* €™ sin k (a + ct),

' % (plp + g2) =kc* €™ cos k (a + ct) — kc* €™;
whence
plp—gb+k"e®cosk(a+ct) =—c e cosk(a+ct)
+4cfe ™+ C
At the free surface p must be independent of ¢, whence
| g =kc".

The wave length A = 2m/k, and ¢ is the velocity of propagation ;
hence ¢ = (gA/27)}, and is therefore equal to the velocity of propa-
gation previously found for deep sea waves.

The pressure is given by the equation

plo=gb+ide™+C
=c*(kb+4e ™) +C,

and therefore retains the same value at every point moving with
the liquid. If therefore we put b=p@ at the free surface, we
obtain

plp=c{k(®-B)+}(e™—e ™)},
which makes the pressure vanish at the free surface. The quantity

b increases with — z, and therefore the wave disturbance decreases
with the depth of the liquid.

The velocities of the liquid are
u=2a=ce™ cos k (a + ct)
w=z:=ce®sink (a+ ct),
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from which it can be shown that a velocity potential does not
exist. In fact

((_lﬂ du) d (z, 2)

dz _ dz m = W2, — W2, + U, — UyT,,
where the suffixes denote partial differentiation; whence if  be
the molecular relation ’

o = ke ™/(e™ - 1).

The motion is therefore rotational, and therefore waves of this
description could not be generated in a frictionless liquid which is
under the action of natural forces.

Waves at the Surface of Separation of Two Liquids.

389. Let us first suppose that two liquids of different densities
(such as water and mercury) are resting upon one another, which
are in repose except for the disturbance produced by the wave
motion, and which are confined between two planes parallel to
their surface of separation. Let p, p’ be the densities of the lower
and upper liquids respectively, , 2’ their depths, and let the origin
be taken in the surface of separation when in repose.

In the lower liquid let

¢ =4 coshm (z + k) cos(mz —nd) ............ (11),
and in the upper let
¢’ =A'coshm (z—k)cos(mz—nt) ............ (12),
also let 7 = a sin (mx — nt),

be the equation of the surface of separation. At this surface, the
condition that the two liquids should remain in contact requires
that

dn/dt =d¢/dz = d¢'/dz, when z=0.
Whence —na=mAd sinh mh =—-mA'sinhmh’.

If 8p, 8’ be the increments of the pressure due to the wave
motion just below and just above the surface of separation, then

op + gpn + pdg/dt = 0,
and 8p' +gp'n+p'de’/dt =0,
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and since &p = &', we obtain
g (o= p)n=—pde/dt + p'dd’[dt
=n(— Ap cosh mh + A'p’ cosh mh') sin (ma — nt)
= (p coth mh + p' coth mh’) n'*n/m,

whence

— a_ gp—¢)
U= (nfm)" = m (p coth mh + p’ coth mh’)’

where m = 27/,

390. When X is small compared with A and A, then mh, mh’
are large, and coth mh and coth mh’ may be replaced by unity; we
thus obtain

Ur=g(—p)mp+p).
If p’ > p, U* is negative and therefore n is imaginary; hence if
the upper liquid is denser than the lower the motion  cannot be
represented by a periodic term in ¢, and is therefore unstable.

If the density of the upper liquid is small compared Wxth that
of the lower, we have approximately

U* = gm (1 - 20/ ).
If the liquid is water in contact with air, p’/p ="00122, hence
if the air is treated as an incompressible fluid

U*="99756 x gm™.

391. Secondly, let us suppose that the upper liquid is moving
with velocity V7, and the lower with velocity ¥'; then we may put

¢ = Va + A coshm (z+ k) cos (ma — nt)
¢ = V'e+ A’ coshm (z — k') cos (mz — nt).
Let the equation of the surface of separation be
F=n—asin(mz—nt)=0.
Then in both liquids # must be a bounding surface, and there-
fore when 2 =0,
dF d¢dF dFd¢ _
G T dods tdpds

dF  d¢’ dF+dFd¢
dt T dr dz dn dz

Whence an—mVa+mA sinhmh=0

an—mV'’a —mA’sinh mh’ = 0.
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Hence if U=n/m be the velocity of propagation,
d sinh mh=a(V-U)
A'sinhmh’'=—a (V' - U).
If 8p, 8p’ be the increments of pressure at the surface of
separation due to the wave motion,
Sp/p + gn + de/dt + § {V — Am cosh mh cos (mz — nt)}* =4 V*
&0'[p’ + gn+d¢’/dt + } (V' — A'm cosh mh' cos (ma — nt)}* =3 V™.
Therefore since 3p = &p’,
ag (p—p')=Amp (V— U) cosh mh — A'mp’ (V' — U) cosh mh'
or g(p—p)=mp (V- U) coth mh + mp’ (V' — U)* coth ml,

which determines U.

Waves in Canals with Sloping Sides.

392. In all the preceding sections the motion considered has
been in two dimensions, and the results are therefore applicable
either to straight crested waves in an unlimited ocean, or to waves
in a canal whose cross section is a rectangle. We shall now
consider some cases of three-dimensional motion.

We shall first discuss the case of waves propagated along a
straight canal of uniform section, whose sides are two planes
inclined at an angle }7 to the horizon.

Let k be the greatest depth of the canal, and let the origin be
taken in the line of intersection of the two sides. The equations
of the two sides of the canal are y +2=0, and the boundary
conditions are

d¢/dy — dp/dz=0 when y —z=
d¢/dy + dp/dz =0 when y+2=0.

The equation of continuity and the boundary conditions will
be satisfied if

¢ = A cosh my cosh mz cos y/2 (mz — nt).

At the free surface where z = b, we must have

ldg/dz = ¢,
for all values of # and y, whence _
ml = coth mh,
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and therefore  U* =n'/m' = g/lm® = gm™ tanh mA,
= (g\/ma/2) tanh Thy/2/N.
The free surface is determined by the equation
dn/dt=d¢/dz = mA sinh mk cosh my cos y/2 (mz — nt),
whence 7 =—(mA/ny/2)sinh mh cosh my sin /2 (mz —nt).
These results are due to Prof. Kelland.
The equation of continuity and the boundary conditions will
also be satisfied by assuming
' ¢ = B sinh my sinh mz sin /2 (mz — nf),
in which case we should have
U* = (g\r/mn/2) coth why/2/N,
7 = (mA4 [ny/2) cosh mh sinh my cos 4/2 (mw — nt).

393. Kelland'® also obtained the solution for progressive waves
whose crests are perpendicular to a shore whose inclination to the
horizon is }m, and which are moving parallel to the shore. This
solution has been generalized by Prof. Stokes* for a shore sloping
at any angle a.

Let the origin be taken in the line of intersection of the shore

with the undisturbed surface; then the equation of the shore

will be
ysina+zcosa=0,

and the boundary condition is
d¢ d¢

== sina + - cosa = 0,

dy dz
which is satisfied if
¢ = A exp {—m (y cos a — z sin a)} cos (mz — nt).
Whence mlsina=1,
and U*=(g\ /27) sina.

894. If we attempt to determine the solution for progressive
waves along a canal whose sides slope at an angle ir to the
horizon, by assuming that ¢ =F (y, 2) cos 42 (mz —nt), it will be
found that the period equation has only one real root, viz. mh =0,

¥ Trans. Roy. Soc. Edin. vol. xv. p. 121,
? Brit. Assoc. Rep. Hydrodynamics, 1846.
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repeated four times. Hence it follows that progressive waves in-a
canal of this form are unstable; we must therefore assume
¢ = P cosh ¥/2 (mz — nt).
The boundary conditions are
d®/dy = dP/dz, when y =243,
d®/dy = — d®/dz, when y = — 243

These equations together with the equation of continuity will
be satisfied by assuming

® =sin m (z —a) cos my + sin m {(~/3—.1)z—21} cosim (W3+1)y
—sin m{(W3+1) 2+ 2af cosym (v3—1)y.

Substituting this value of @ in (6) and putting m (h—a) =4,
we obtain the following equations :
ml=tany=(y/3 + 1) tan {y — 3 (3 — y/3) mh}
= (v3—1)tan {} 3+ v3) mh—}.
From these equations we find that tan ¢ is an barmonic mean
between tan 4 (3 — 3) mh and tan 4 (3 + /3) mh, which determines

v and therefore a in terms of mh; and on eliminating ¢ we shall
find that the period equation is

(2 —4/3) cos (3 + &/3) mh + (2 + 4/3) cos (3 — 4/3) mh — cos 2mha/3=3,
which is an equation with an infinite number of real roots.

Since wave motion is stable when the sides of the canal are
inclined at an angle }7 to the horizon, and unstable when they
are inclined at an angle }m, it follows that there must be some
inclination lying between }= and }m which forms the limit
between stability and instability. The value of this angle has not
apparently been determined.

Standing Waves across a Canal.

395. If liquid is contained in a straight canal whose sides are
inclined at any angle a to the horizon, and if the free surface is
either displaced in such a manner that its eguation is n=F(y),
where y is measured across the canal, and the liquid is then left to
itself; or'if a velocity f (y) is communicated to every point of the
free surface, after which the liquid is left to itself; the subsequent
motion of the liquid, if periodic, will consist of oscillations composed
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of waves whose crests are parallel to the sides of the canal. Such
oscillations are called standing waves, and the theory of them has
been investigated by Kirchhoff' and Greenhill®.

When the sides of the canal are inclined at an angle }= to the
horizon, the boundary conditions are

d¢/dy —dp/dz=0 when y—z= 0}
dp/dy +dp/dz=0 when y+2=0

We can at once obtain an algebraic solution, by supposing that
the free surface is initially plane.

Let n=ay, =0 initially. The equation of continuity and (13)
_are satisfied if .
¢ = Ayzsinat. -
From (6) we obtain I=h; also
' n =d¢/dz = Ay sin nt.
Whence n=— An"'y cosnt,
and therefore ¢ = — anyz sin nt.
The value of the current function V¥ is
¥ = dan (y* — 2*) sin nt,
which shows that the stream lines are rectangular hyperbolas.

396. The eQua.tion of continuity and (13) are also satisfied if
¢ =34 {cosm (y+2) + cosm (y — u2) + cos m (2 + 1y)
+ cosm (z — vy)} (cos or sin) nt.
Taking the izpper sign, and putting mh =p, we obtain from (6)
ml (cos my sinh p — cosh my sin p) = cos my cosh p + cosh my cos p.
Since this equation is true for all values of y, we must have
ml=cothp=—cotp ...c....ce..o........ (14).

Similarly if we had taken the lower sign, we should have
obtained
ml = tanh p = tan p

~ Both the period equations (14) and (15) are included in the
single equation - ’ .
cos 2p cosh 2p =1,

! Ueber Stehende Schwinzungen einer schweren Fliissigkeit, Gesam. Abhand.
vol. 11, '

¢ Amer. Jour. of Math. vol. 1x. p. 62.
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which is the period equation for the lateral vibrations of a bar.
This equation is discussed in Lord Rayleigh’s Theory of Sound,
vol. I p. 219, and it is there shown that it has an infinite number
of real roots. .

397. In order to find the solution for standing waves parallel

to a shore which slopes at an angle }, let

p=A {eme-) 4 ¢~my—2)}] (cos or sin)nd,
the origin being in the line of intersection of the undisturbed
surface with the shore, and y being measured from the shore.

This value of ¢ satisfies the boundary condition

d¢/dy + dp/dz =0 when z=—y.

If we take the real part of this expression alone, it will be
found impossible to satisfy (6), but if we add together the real and
imaginary parts we obtain

¢=A {¢™ (cos my —sin my + € ™ (cos mz + sin mz)} (cos or sin) nf,
and (6) gives ml=1.

Whence U* = g\/27.

398. The corresponding solutions for standing Waves across a
canal whose sides are inclined at an angle }w to the horizon,
bave also been obtained by Kirchhoff, In this case we can obtain
an algebraic solution by supposing that the initial form of the
free surface is the parabolic cylinder

n=a(k*-y),
where A is the depth of the liquid, and the origin is a point in the
intersection of the sides.

-The equation of continuity is satisfied if

¢=AD sin nt,
where D =2 - 3y'z + 28,
and the corresponding current function is
Y=y (/3 -y) (2v3+),
which vanishes when y =+ 24/3, so that the boundary conditions
are satisfied:
At the free surface z = k, and
d®

e _a9py__ 9,8
T = 3h'— 3y* = ®/h,
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and therefore [=h. Also
7=84 (k' — y*) sin nt,
therefore . n=—384n" (A* — y) cos nt,

which shows that the initial form of the free surface is a parabolic
cylinder.

For the solution in the general case, we must refer the reader
to Prof. Greenhill’s article on Waves'.

Waves in a Cylinder®.

899. The equation of continuity referred to cylindrical co-
ordinates @, 0, 2 is

Ty 18 L8 T, g

If b be the depth of the liquid, the surface conditions are
dp/dz=0 when z=—h.....c............ 17,
ldp/dz=¢ when z=0..................... (18).

In order to satisfy (16), assume
¢ = AF (=) sin n6 cosh (kz + B) cos pt.
Substituting in (16) we obtain

&F 1dF oF
TRHD T A RF=0 (19),

whence F=J, (k).

If a be the radius of the cylinder, d¢/dew =0 when r=aqa,
whence

and the different values of & are the roots of (20), which can he
shown to be all real.

The value of n will depend upon the particular problem under
consideration. If the motion is symmetrical about the origin,
n=0; if on the other hand the liquid is contained within a sector
of angle 2a where a < }, and if the line bisecting the angle of the

1 American Journal of Mathematics, vol. 1x. p. 62.
2 Lord Rayleigh, ‘* On Waves,” Phil. Mag. April, 1876.
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sector is taken as the initial line, we must bave d¢/df =0 when
6 = + 2, wheunce n = (2m + 1) w/22 where m is a positive integer.
From (17) we obtain 8=Fkh; and from (18) we find
kl = coth kh,
whence p* =gk tanh kh.

400. Let us now suppose that the liquid is initially at rest,
and that the free surface is displaced so that its initial form is

n=wcos .
Then

¢ =2AJ, (k@) cos f cosh k (z + k) sin pt,
and :
de/dz = dn/dt = kAJ, (kw) sinh kh cos 6 sin pt,
and n=—2kp™ AJ, (kw) sinh kh cos 6 cos pt ......... (21).
Initially 7= cos §, therefore
® =—2kp™' A sinh kh J | (kw),
and putting Akp~sinh kh =— B, we obtain
w = 3BJ, (kw),
n = %BJ, (k=) cos 6 cos pt.
Let I,=J,(K'=), then, if the accents denote differentiation
with respect to =,
w’Jl" + 'le' + (Fa* - 1) Jl =0,
o'l +w I +(k*a*—1) I, =0,
whence

k™ - F) fa wlJdw +alJ, - I1J)),=0.

Since I',(K'a) and J', (ka)=0, the integral must vanish if &
and ¥’ are different; to find the value of the integral when k£ =¥/,
lét k' = k + ok, then

2k f " @ (bw) dwr +a (J, ‘%‘l{;— . ‘3—,’;-1) 8k =0,
therefore f " 2 (hw) der = — o T

Hence

—BarJ J) |2 = f " @t (kw) da.
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But oL (@) +Wa'=1)J,=0
dw ! ! ’

whence f * Wt — 1) J dw—ad, + f * Jdw =0,
) [

and therefore
Be— 2 _ 2a
T aJ] (Kat—1)J, (ka)’
=3 20/, (kar) cos § cos pt
=S T = 1) J, (ka)
which determines the form of the free surface at any subsequent
time.

and

Waves in Hyperboloids and Cones.

401. If we put
¢=zm"sinnfcos pt...........coeuenen.. (22),
(16) is satisfied ; also at the free surface where z=A,
hdgp/dz = ¢
so that I =nh.

Let us suppose that the vessel which contains liquid having
this motion is one of revolution; in order to determine its shape,
we have along a meridian section

b 4,49 4,

or ‘ nzdz = wdw
by (22); whence integrating
n'=w"+C.
The containing vessel is therefore a hyperboloid of revolution,
including as a particular case a cone of semi-vertical angle tan™ y/n.

Long Waves in Shallow Water.

402. In the theory of long waves it is assumed that the length
of the waves is so great in proportion to the depth of the water,
that the vertical component of the velocity can be neglected, and
the horizontal component is uniform across each section of the
canal. In § 385 we saw that if the depth is small compared with
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the wave length then U* = gh, provided the square of the velocity
is neglected. We shall now examine this result in connection with
the above-mentioned assumption.

Let the motion be made steady by impressing on the whole
liquid a velocity equal and opposite to the velocity of propagation
of the waves. Let n be the elevation of the liquid above the
undisturbed surface; U, u the velocities corresponding to k and
h + 7 respectively. The equation of continuity gives

u=hU/(h +9),
whence U —u'= U (2hn + n)/(h+ )"

If &p be the excess of pressure due to the wave motion
(T )
8p_{2(h+7))' UAd
When n/h is very small the quantity in brackets is U*/h—g;

whence if U* = gh, the change of pressure at a height & + # vanishes
to a first approximation and therefore a free surface is possible.

If the condition U* = gh is satistied, the change of pressure to
a second approximation is

8p =—3gpn’/2h,

which shows that the pressure is defective at all parts of the wave
at which # differs from zero. Unless therefore #* can be neglected,
it 18 tmpossible to satisfy the condition of a free surfuce for a
stationary long wave ;—in other words, it vs vmpossible for a long
wave of finite height to be propagated in still water without change
of type. If however n be everywhere positive a better result can
be obtained with a somewhat increased value of U; and if 9 be
everywhere negative, with a diminished value. We therefore infer
that positive waves travel with a somewhat higher, and negative
waves with a somewhat lower velocxty than that due to half the
undisturbed depth’.

403. The theory of long waves in a canal may be investigated
analytically as follows®.

Let the origin be in the bottom of the liquid, 2 the undisturbed
depth, 7 the elevation ; and let « be the abscissa of an element of
liquid when undisturbed, § the horizontal displacement. The

1 Lord Rayleigh, “On Waves,” Phil. Mag. April, 1876.
2 Airy, “Tides and Waves,” Encyc. Met.
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quantity of liquid originally between the planes z and z + dz is
hdz; at the end of an interval ¢, the breadth of this stratum is
dz (1 +d§/dz), and its height is A+ 7, whence the equation of
continuity is

(A +déldz) (h+n)=h .ccveennnnnnn.n. (23).

Let us now investigate the motion of a column of liquid
contained between the planes whose original distance was dz ; and
let us suppose that in addition to gravity, small horizontal and
vertical disturbing forces X and Y act. Since the vertical accelera-
tion is neglected, the pressure will be equal to the hydrostatic
pressure due to a column of liquid of height % + #, whence

Bt

p=gp(h+ﬂ—y)+va Ydy oo (24).

The equation of motion of the stratum is

i J. )
dt’__—( +m)+ Xphoooouiiianean (25).
Now from (24),

dp _ +n dY .
pa gp "t pY f ............ (26);

also in most problems to which the theory a,pphes the last two
terms on the right-hand side of (26) are very much smaller than
the first, and may therefore be neglected, whence (25) becomes

& d
B g htn) T X

Substituting the value of # from (23) we obtain

Z'tf hfj(ndf) I SO @),

For a first approximation, we may neglect squares and products
of small quantities, and (23) and (27) respectively become

R T I (28),
fl'tf ghg;f,+X e ..(29).

If X =0, the form of (29) shows that the velocity of propaga-
tion is equal to (gh)".
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Stationary Waves tn Flowing Water'.

404. Let us suppose that water is flowing uniformly along a
straight canal with vertical sides, and that between two points 4
and B there are small inequalities, and that beyond these points
the bottom is perfectly level. Let a be the depth, u the velocity,
p the mean pressure beyond A ; b the depth, v the velocity, and q
the mean pressure beyond B: also let f be the difference of levels
of the bottom at 4 and B.

The total energy of the liquid per unit of the canal’s length
and breadth, at points beyond B is

b
W+ [ yy+w=36 +gb)b+u,

where w is the wave energy, and the density of the liquid is taken
as unity. At very great distances beyond B the wave motion will
have subsided and w will be zero.

The equation of continuity is

au=bv=M...cc.cococuvrniiniinn. (30).

The dynamical equation is found from the consideration that
the difference between the work done by the pressure p upon the
volume of water entering at 4, and the work done by the pressure
g at B upon an equal volume of water passing away at B, is equal
to the difference between the energy which passes away at B, and
the energy which enters at A. Whence

pau— qby = (39’0 + §gb* + w) v — (Ru'a + g f;+f ydy) v,
which by (30) becomes,
p—q=3v"+ 390+ w/b— 3u'— g (f+3a)......... (31).

Now p and g are the mean pressures, and therefore since the
pressure at the free surface is zero,

p=1%g9a, q=4gb+w'fb,
where w’ denotes a quantity depending on the wave disturbance ;
whence (31) becomes

3M* (0 — B)/a®b* — g (@ —b+£) + (w — w)/b=0......(32).

If we put
D*=2a"/(a+b), M=VD;

1 Bir W. Thomson, Phil. Mag. (5) vol. xxm. p. 353.
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D will denote a mean depth intermediate between a and b, and
"approximately equal to their arithmetic mean when their differ-
ence is small in comparison with either; and ¥V will similarly.
denote a corresponding mean velocity of flow. We thus obtain

from (32)
J—(w—u)/gb
“1-V¢D
If b — @ were exactly equal to f, and there were no disturbance
of the water beyond B, the mean level of the water would be the
same at great distances beyond A and B; but if this is not the
case, there will be a rise or fall of level, determined by the formula

- VflgD + (w — w')/gb
y=b=a=f=—""vp

Let us now suppose that between 4 and B there are various
small inequalities; each of these inequalities will produce small
waves whose nature is determined by the form of the functions w,
w'; hence w and w’ will both be small quantmes and the sign of
y w111 be independent of that of w—. Now f is positive or
" negative according as the bottom at A is higher or lower than the’
bottom at B. Hence if V*< gD the upper surface of the water
rises when the bottom falls, and jfalls whewn the bottom rises; and
the converse 13 the case wher V* > gD.

b—a=

Theory of Group Velocity.

405. When a group of waves advances into still water, it is
observed that the velocity of the group is less than that of the
individual waves of which it is composed. This phenomenon was
first explained by Prof. Stokes', who regarded the group as formed
by the superposition of two infinite trains of waves of equal
amplitudes and nearly equal wave lengths, advancing in the same
direction.

Let the two trains of waves be represented by cosk (Vi—z)
and cos &’ (V't — ) ; their resultant is equal to

cosk (Vi—a)+cosk' (Vt—a)=2cos} (V' —kV)t— (K —k) =}
' x cos} (V' +kV)t — (K +k) ).

1 Smith’s Prize Ezamination, 1876; and Lord Rayleigh, ‘“On Progressive
‘Waves " ; Proc. Lond. Math. Soc. vol. 1x,

11—2
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If ¥ —k V'—7V be small, this represents a train of waves
whose amplitude varies slowly from one point to another between
the limits 0 and 2, forming a series of groups separated from one
another by regions comparatively free from disturbance. The
position at time ¢ of the middle of the group which was initially at
the origin is given by

KV -kV)t—(k —k)z=0,
which shows that the velocity of propagation U of the group is
U=FV' —kV)/(K ~ k).

In the limit when the number of waves in each group is
indefinitely great we have k' =%+ 8k, V'=V + 8V, whence
adkV)

V=—-d—k—.

406. In the preceding investigation we have supposed that
the pressure at the free surface is either constant or zero; we shall
now find the forced waves' produced by a surface pressure which
is equal to

o'+ b

Let z+ & z+ ¢ be the coordinates at time £ of a particle whose
initial position is (z, £); also let P denote the time integral of the
velocity potential. Then

I CIE

d [t dP dP
E=d—wf,¢dt=d—w’ £= 37

Since the motion is small,
d¢
p=C-gGE+H-5
ap_ap

=0—gz—-_qa—;— g (33),
the density being taken as unity. The equation of continuity is
apP d'P
%‘ + @‘ = 0 ........................ (34),
also if 9 be the elevation
dP
n= —d—z ........................... (35)

! Sir W. Thomson, Pkil. Mag. (5) xxm1. p. 113.
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A solution of (34) is evidently
Y ()=0b—2+w) Yexp [ gf/a (b~ 2 + wr)}......(36).
Changing ¢ into —¢, adding and dividing by 42 we obtain
¥ () = {r— 2 4+ b) cos gt* /4r* + (r + 2 — b)! sin gt* z/4+%)
x exp { — gt* (b— 2)/4r*}...(37),
where r’ b-2y+2

It is known from the theory of the Conduction of Heat that
(36) and therefore (37) is a solution of the equation®

dy Py _
9 Gy T g =0 e (38),
whence if '

t
x®=[ v@r
x (t) is also a solution of (38). Let us now assume that
¢ ¢
P=—f x (t — ) sin o)'rd'r=—f x (t)sine (¢t —17)dT,
o o
then since x (0)=0,

Q——f x (t — 7) sin o7dr,

- —fo¢(t — 7)sin wrdr,

also since
¥ (0)=(r—z+b)/r,
d'P t .
=1 (r—z+b)! sin 0t — ' (t — 7) sin w7dT,
-5 ( )? sin w ‘[o\[r( 7) sin wrdT

¢
=—1"(r—z+b) sinwt — f x" (t —7) sin w7dr.
(4

We thus obtain

dP d'P

It =" ! (r— z + b)Vsin wt

_..ftsmw(t—-'r) {d’ +g:iix}'d'r,

[
=—7"(r—z+b)sin ot

1 This will be proved in Chapter XXIII,
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Whence at the surface where z = 0, we obtain from (33)

g (] $
p=0+{(—b;—i)5;ﬂ} sin wt.

The velocity potential is
dP ¢,
=5-=- t— 7 39).
o=Gp=—[ dmot-ny@dr (39)

and the value of { is

dP 1 {gzi, (r—s+b)t

p= 90 =110 240 i wt} ......... (40).

407. Sir W. Thomson has worked out the value of the eleva-
tion % on the assumption that 5=0. This assumption undoubtedly
makes the pressure infinite at the origin excepting for values of ¢
which are equal to 2mw/w, but as we shall only investigate the
value of 7 at great distances from the origin, the solution we shall
obtain will be sufficiently accurate to represent the motion at
such points.

Putting b=0, z=0, we obtain
¥ (2) = (2/z)} sin (g/da + 7).
Let g/4x = I, then the preceding equation becomes
¥ (1) = (2/2)} sin (B¢ + 1),

whence if
o =kr,

kt
¢=—2 (2/9)?"[o sin w (¢ — o/k) sin (0* + }7) do,

= @lo) [ [eos (o~ §fk) ~ Jo'lk"+ ot + 1]
- ~ c0s {(o + o k) ~ $oi k" ~ ot + §r)] do,
kt — ok
= 2/g)t f co8 (A — 30k + oot + §r) d,
b

- @/g)* f :;Mcos A=} — ot + ) dheeenicnen (41).

Let # be very large, and let ¢ be so large that kt—3w/k is a
large positive quantity. Then % is small and the second integral
vanishes, whilst the limits of the first are o0 and — o0, whence
remembering that

f : (sin or cos) A'dA = (§)},
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we obtain
¢ = (2m/g)! cos (w'z/g — wt),
n=w (27/g")} sin (o* 2/g — of) — (9/2me* z)} sin wi},
= (21/¢°)} sin (0*2/g — @F) evrrerrrreeeeeeeen, (42),

approximately, since the first term is large compared with the
second.

and

Hence
A =2mg/e’, U=g/o=(_g\/ o)k,
We therefore see that at great distances from the origin, where
the pressure is approximately constant, the waves are approxim-
ately the same as a procession of free waves.

On the other hand if # is large and ¢ so small that kt — jw/k is
a large negative quantity, hoth integrals vanish; and wave motion
does not exist. Hence as the time advances wave motion gradually
commences from nothing until it becomes the regular procession
of waves represented by (42) and so continues for ever afterwards.

When « is large, the value of ¢ at the time ¢ = 2wz/g, is
¢ =2/} f cos (M — 1'%’ + wt + }m) dA,

]
= (m/29)* cos (0*z/g — wt),
and therefore ¢ has attained half its final value. The point «
where this condition is fulfilled at time ¢ may be called the mid-
front of the procession. It travels with the velocity 4g/w or half
the wave velocity. :

Deep Sea Waves.

408. In § 387 we determined the motion of deep sea waves
upon the assumption that the motion is slow enough to allow the
squares and products of the velocities to be neglected. A higher
degree of accuracy might be obtained by substituting the solution
we have already obtained in the terms of the second order, and
proceeding by the usual method of successive approximation. This
mode of proceeding is however somewhat laborious, and we shall
therefore employ a different method which is due to Prof. Stokes’.

1 Math. and Phys. Papers, vol. 1. p. 814.
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Since ¢ and Y are conjugate functions of # and 2, we have
dz/dp =dz/dyr, and dz/dy =—dz/d ;

de\*  (da\' _ (dz\' | (dz\}
s=(a5) +(ay) = (@) + (&)
and if we change the independent variables from « and z to ¢ and
v, we obtain

whence if

Sd¢/dz=dz/dy, Sd¢/dz=—dz/dy,
whence w+w=8"
and plp+g(2—C/m)+ (28)* =0,
where C and m are constants,
Let us convert the wave motion into steady motion by impress-
ing on the whole liquid a velocity — U, where U is the velocity of

propagation of the waves. If there were no wave motion we
should have ¢ =— Uz, whence we may assume

z=—¢/U+ m3, (Be™'U 4 A e ™V) (sin or cos) rme/ U,
z2=—Y/U+m?Z] (Be™7 — 4,67™7) (cos or sin) rme/U,

where r is a positive integer. If A\ be the wave length, the value
of # when ¢ is changed into ¢ — 2w U/m must be z+\; whence
m =2m/\. Also if 4 =0 be the equation of the free surface and
the origin of z and ¢ be taken in the trough of the wave, z must
be a maximum when ¢ =7U/m ; whence the cosine terms in z,
and the sine terms in z must disappear. Since z is measured
upwards and Uz=—+ in the undisturbed motion, y» must increase
with the depth of the liquid, whence the B’s vanish. If therefore
we write for shortness ¢ and + for m¢/U and m+/U, the values
of x and z may finally be written

z=—¢/m+m* I A,V sinrd
z=—Y/m—m* 2, A, cosrd

where the A’s have to be determined. At the free surface p and
Y- are zero, whence

(z—C/m)S +(29)"=0.
Substituting the values of z and S obtained from (43), we find

(C+Z4,cosrp)[1—23rd,cosrd + 30”4+ 23rsd A, cos (r—8) p]
~ U’m/29 =0...(44),
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where in the term in the square brackets, each different combina-
tion of the letters » and s is to be taken once.

This equation may be arranged in the form
B, + B, cos ¢ + B,cos 2¢ +... =0,
and since it bas to be satisfied independently of ¢, we must have
B,=0, B,=0, B,=0 &c............ue..... (45).

Let A,=b; then we shall make the assumption which will be
justified by the result, that A4, is a quantity of the order ¥, and
we shall endeavour to obtain an approximate solution as far as the
terms involving b°. Equations (45) written out at full length as far
as the terms of the order b° become,

CA+A+4AN)— AP+ 2424, —-24 " — U'm/29 =0

C(—24,+44, 4, +124, A)+ A, + A’ -34 4,

+64A°+34'4,—54,4,=0

C(—44,+644)+ A, —A+34°4,—44 4,=0
C(—64,+84,A)+A4,—-34, 4 +44’4,+24 A}

—-544,=0

—-80A4,+A,—44.4,-24}=0

~10C4,+ 4,-54,4,—-54,4,=0

> (46).

J

In order to obtain a first approximation, we must reject all the

terms except those of the lowest order in each equation, and we
shall obtain

C=Um/2g, C=}, A,=—10, A,=3", A,=—§b", A,=1350",
whence U®=g/m=g\/2% as before.
Let us now put
C=%+az, A,=-0-y, A,=§b’+2

where z, y, 2z are at least of the orders b, b°, b* respectively. Sub-
stituting in the second, third and fourth of (46), and retaining
terms of one order higher, we shall obtain

=0, y=4b, z=1§°,
whence —A, =0 +3b, A,=§b+130"
Lastly substituting these values of 4,, 4, in the second of (46)

we obtain

C=}+ 0" + 14,
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and hence the final equations are
U*=gm™ (140" +b*),
mz == ¢ +be ¥ sin ¢ — (b* + 3b°) € ¥ 5in 2 + (§6°+3§0°) ¢ > sin 3¢
—§b'e ™ sin 4¢ + 1280% ™ sin 59,
=—vr—be ¥ cos p +(b*+ §b*) e cos 2¢ — (85° +1§b") ¢ ¥ cos 3¢
+§b'c ¥ cos 4 — 1288%e ™ cos 5¢b.

In order to obtain the equation of the free surface, we must
put Y+ =0 in the preceding equations, and we find

max=— ¢+ bsin ¢ — (b* + 3b*) sin 2¢ + (30° + $§b°) sin 3¢

— §b*sin 4¢ + 128H° 8in 5¢...(47),
mz=—bcos ¢ + (b° + 4b*) cos 2¢p — (§0° + 1§b°) cos 3¢

+ §b* cos 4¢p — 1258° cos 5¢p...(48),
and the equation of the wave profile is determined by eliminating
¢ between (47) and (48).

The elimination is most easily effected by Lagrange’s theorem,
and gives

— mz + 4b* + b* = (b + §b°) cos ma — (}b’ + 4b*) cos 2ma + §b° cos 3ma:
— 3b*cos dma,
to the fourth order. Let b + §b* = a, then to the fourth order
b=a- 3’
and shifting the origin so as to get rid of the constant term, the
equation of the wave profile may finally be written
mz = — a cos ma + (§a* + 4ja*) cos 2mz — §a’ cos Sma + }at cos 4ma.
Now the equations of a trochoid are given by the equations
mz=af+ Bsinf, —mz=RLcos0+r.
In order that # may have the same period in the trochoid as in
the wave profile, we must have @ =1. We then obtain by deve-

lopment of the fourth order, and choosing ¢ s0 as to make the
constant term vanish

—mz = (B — §8°) cos mzx — (38" — }B*) cos 2mx + §B° cos 3mx
— $8* cos dma,
and putting 8 — $8° =a, we obtain to the fourth order

mz=— a cos mz + (§a* + J4a') cos 2mx — §a® cos 3mz + }a’ cos 4ma.
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Hence if z,, z, denote the ordinates of the wave and trochoid
respectively
z,— z,=%a'm™ cos 2ma.

Hence to the third order the form of the wave profile is a
trochoid, but if we proceed to the fourth order we see that the
wave lies a little above the trochoid at the crest and trough, and a
* little below it at the shoulders.

Prof. Stokes has also applied the same method to investigate
the form of the waves propagated in a liquid of finite depth, but
the results are naturally more complicated, and we must therefore
refer the reader to his Collected Papers®.

409. Professor Stokes has also shown? that in addition to the
wave motion, the liquid has a slow motion of translation in the
direction of the wave, which rapidly diminishes with the depth of
the liquid. Lord Rayleigh® has given an elegant geometrical proof
that this motion is a consequence of the absence of molecular
rotation, and is independent of the condition of constant pressure
at the free surface.

A Po

¢ P B
¢ D

‘: Pl 9 8

c Y 0

Let AB be the surface from crest to hollow, and CD a
neighbouring stream line. Let us suppose the motion is made
steady by reversing the velocity of propagation, and draw two
stream lines A’B’, (") at such a depth that the steady motion of
the liquid is uniform, and so that the flow across 4’C’" is equal to
the flow across AC. Then we have to show that a particle at 4
will take longer to reach B, than a particle at 4’ takes to arrive at
B'. Now if o denotes the small breadth of the tube of flow 4D,
and V the velocity, the total stream is ov and is constant and

1 Vol. 1. p. 820.
? Math. and Phys. Papers, vol. 1. p. 207.
3 Phil. Mag. April, 1876,
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equal to K suppose. The time occupied by a particle in travelling
from A to B is therefore

t=[v'ds=K"[ods= K" area AD.
Hence if ¢’ is the time from 4’ to B,
t =K"'area A'D,
and since K is the same in both cases,
t:t:area AD:area A'D,
and it remains to show that area AD > area A'D".

Let us draw a series of equipotential lines ¢ and ¢ + d¢, such
that the small spaces between them and 4B, CD are squares.

Then PQ=d¢/v, PP'=dy/v and therefore d¢ =dy: also
pg=de/v, pp' = dy'/v/, but since the flux across AC, and 4'C" are
the same, dy~’ = dyr = d¢, whence pg = pp’ and therefore the equi-
potential lines divide A'D’ into squares. Now if a line be divided
into a given number of parts, the sum of the squares of all the
parts will be a minimum when the parts are all equal'. Hence
the space AD is greater than if the squares described on AB were
all equal, and therefore a fortiori greater than the space A'D’
which consists of the sum of the squares of equal parts of a shorter
line.

Hence it follows that when a particle starting from A4’ has
arrived at B', another particle starting at the same moment from 4
will fall short of B. Thus in a progressive wave, the water near the
surface has on the whole a motion of translation in the direction in
which the waves advance.

1 This may be proved as follows. Let
Ui=2%+y?+ul, A=z+y+p,

where \ is the length of the line; x and y the lengths of any two parts; 2 and u
the sum of the squares, and the sum of the remaining parts respectively, then

N - U2=2zy +2u (= +y) - u?
=} (z+yP-3 (-9 +2% (z+y) - w2
Hence A2- U will be & maximum, and therefore U? will be a minimum when
z=Yy.
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SEecrion II.

The Solitary Wave.

410. The theory of irrotational waves of permanent type
depends upon the assumption, that it is possible for an infinite
train of similar waves to follow one another without suffering
degradation of form. The experiments described by the late Mr
Scott Russell indicate that it is possible for a single wave to be
propagated along the surface of a liquid, and such a wave is called
by him a solitary wave. He states that the length of .the wave is
about six or eight times the depth of the liquid, and therefore
partakes of the character of a long wave; but that it possesses
several peculiarities, the principal of which are that a positive
wave or elevation is capable of being propagated to a considerable
distance without breaking up, whilst a negative wave or depression
is incapable of being propagated to any considerable distance with-
out becoming dissipated.

The mathematical theory of the solitary wave has been in
former times the subject of considerable controversy; it was
discussed by Earnshaw?® in 1845, but his theory has not been
regarded as satisfactory. A satisfactory approximate theory was
given by Boussinesq® in 1871, and a very similar one was dis-
covered independently by Lord Rayleigh* in 1876. We shall now
proceed to consider the theory of the latter.

411. We shall suppose that the motion is in two dimensions,
and that the bottom of the liquid is horizontal. Let the origin be
taken in the bottom of the liquid, and let the axis of z be
measured in the direction of propagation of the wave, whilst the
axis of y is measured vertically upwards. Let [ be the depth of
the liquid when undisturbed, I’ the height of the crest above the
bottom of the liquid.

1 Brit. Assoc. Rep. on Waves, 1844.
3 Trans. Camb. Phil. Soc. vol. vimr. p. 326.
3 Comptes Rendus, vol. Lxmr.

4 Phil. Mag. Ap. 1876; See also Airy, T'ides and Waves ; Stokes, Brit. Assoc.
Rep. on Hydrodynamics, 1845.
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Since the motion is irrotational, the current function - satisfies
Laplace’s equation, and we may therefore put

¥ =iin(y ) F@ =3 @~ L1 @+ L™ @) —...49)

where f(z)=F (z). Since the motion is steady, the pressure is
determined by the equation

plp+gy+}W+o)=4.
Putting 4 — p/p = }w, this becomes

W= — 29y i (50).

At the free surface = must be constant; if therefore we can
determine y as a function of «, such that = shall be constant at the
free surface, this relation will determine its form.

Since u'+ v*=(1 + y"*) w* where y’ =dy/d=, (50) may be written

yu=(ay* — 29"}/ (1 + y™}
Now

y=y— —yf—y'f”+y6f“' ...... =y — 298" ..(51).

1+”

The functlon f is the value of u at the bottom of the liquid
and is very nearly constant, and therefore f(z) varies very slowly;
hence the differential coefficients of f(z) are small quantities.
Also if the curvature of the wave profile is small, y/, y”... will also
be small quantities,and we may therefore eliminate f between (49)
and (51) by successive approximation. Since 4 is constant at the
free surface, we have writing R =+/y,

f=R, f"=R";
whence to the second order
f=R+ IR~ B +
S'=R'+3y'RY - }(y"y +y") " + §y"yR",
S =R + &ec.

neglecting terms of the fifth order. - Substituting in (51) we
obtain

R PR
+y”
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If we neglect terms of the fourth and higher orders, this
equation becomes,

V(A+y) {1 +3 @y - 2"} ==y~ 299"

or Vv (1- 39" +3yy") = oy’ — 2"
The above equation may be put into the form
d'yi

=i (myt - 209t — vy,
Multiplying by 2dytd» and integrating we obtain

} (dyldz)* = Cy + (wy* — gy )P+ 1o (52).

Let u, be the velocity of the liquid in the undisturbed parts of
the stream, then '

and V=] udy=ul...ccocrvvnnon.n. (54).
whence (52) becomes ‘
3 (dy/dz)*=1+ Cy + &* (u,' + 290)[u,'T — gy’ [u,T......(55).

In this equation g and [ are given, whilst C' and u, are at our
disposal ; hence the cubic expression on the right hand side of
(55) may be made to vanish when y=1 and y=1. If we substi-
tute these values of ¥y and equate the right hand side of (55) to
zero, we shall obtain '

U =Gleiniiiniiniiiiii (56),
—Cl=2+gl/u’=2+1l.
Substituting these values of u, and C, (55) becomes,
(dy/dz)* +8(y -0 (y =)/l =0 ............ (57).

From this equation it appears that there is only one maximum
or minimum value of y besides I; and since y — I is necessarily
negative, the surface condition cannot be satisfied to this order of
approximation by a solitary wave of depression.

Differentiating (59) we obtain
dylda’=§ (y—1) 2V +1-3y)/IT,

which shows that the points of zero curvature occur when y =1
and y=4(2I'+!)=l+§(I'—1). Hence the curvature changes
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sign at two-thirds of the height of the wave above the undisturbed
level, and at this point only.

If we put I'—1=8, y—1l=7n and integrate (57), we shall
obtain
n = B sech }z (38/P1)},
the constant being chosen 8o that # =0 when n=48. This equation
determines the form of the wave profile, and it therefore follows
that when the depth of the liquid and the velocity of propagation
are given, there is only one solitary wave. On either side of the

greatest elevation the height diminishes indefinitely, but does not
absolutely vanish ; hence there is no definite wave length.

If we regard the wave as ending where the height is one tenth
of the maximum, we obtain

zfl=2.14(1+RB).
The shortest wave length is when 8=1 and then
2z/l = 596.

If B=§l; 22/l =84; and if B =4I, 22/l =12'6. These results
agree with Scott Russell’s observations.

The form of the wave is shown in the figure, and its velocity of

propagation is given by (56), which is the value deduced by Scott:
Russell from his experiments.

Another of Scott Russell’s observations is now readily accounted
for :—He found that the wave broke when its elevation above the
general level became equal, or nearly so, to the depth of the
undisturbed liquid. If ¥ be the velocity of the liquid at the crest
of the wave we obtain from (50)

Vi=w—29l,

—g@-0),
by (53) and (55); which requires that { >~/ When therefore
the wave is on the point of breaking, the water at the crest is
moving with the velocity of the wave.
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SectioN III.

Capillary Waves.

412. We must now consider the third class of waves, which
are principally due to capillary forces.

Let T be the surface tension of the liquid; &p the excess
of pressure in the liquid just below the free surface; then

8plp +gn +¢=0.
But if 7, » denote the radii of curvature of two vertical sections
in and perpendicular to the direction of propagation of the waves

—p=Tr"+rY)= T@; + Z;Z)

since the curvature is supposed to be small at the free surface;
whence

d'y  d'n -
T ( " dy ) gpn + po.
Differentiating with respect to ¢, and remembering that
1 = d¢$/dz, and that V’¢ =0, the above equation becomes’

¢ =gp d-",—gpr%
d¢ Tl &
or l'd—z + g—p a;,— T tieencecercccnvescans (58),

where [ is the length of the simple equivalent pendulum.

413. We shall now apply the preceding result to determine
the capillary waves propagated along a canal of depth A.

Assuming as usual that
¢ = A coshm (z + h) cos (ma — nt),
and substituting in (58), we obtain
mlsinh mh + Tlm’g™p™ sinh mh = cosh mh.
Whence U*=n'/m’=g(m™ + T'm/gp) tanh mh,
= (gA/2m + 2 T/p\) tanh 2wh/N ...... (59).

Equation (59) determines the wave length corresponding to a
given velocity of propagation.

1 Kolacek, Fortschritte der Mathematic, 1878.
B. IL 12
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Let us now suppose that the depth of the liquid is so great
that tanh 27wh/\ may be replaced by unity. Equation (59) becomes
gpN' = 2mp U\ + 47T =0........e..e. (60),
whence A=aU% + =g~ V(U* — 4Tg/p).

In order that wave motion may be possible both values of A
must be real, which requires that ’

U =or > (4Tg/p)*.
Hence the minimum value of U is (4Tg/p), and the corre-
sponding value of A is 2m/(T/gp).

Sir W. Thomson defines a ripple to be a wave whose length is
less than the preceding critical value of A%,

414. In§ 389 we have considered the propagation of waves at
the surface of separation of two liquids which are moving with
different velocities. We shall now consider the production of
ripples by wind blowing over the surface of still water.

Let V be the velocity of the wind, which is supposed to be
parallel to the undisturbed surface of the water, o the density of
air referred to water.

Since the changes of density of the air are very small in the
neighbourhood of the water, the air may approximately be regarded
as an incompressible fluid, whence if the accented letters refer to
the water, the kinematical conditions at the boundary give

¢ =Vae+a(U~-T)e™cos (ma—nt),
¢’ = — alUe™ cos (mz — nt),
where U is the velocity of propagation of the waves in the water,
and n = a sin (mz — nt) is the equation of its free surface.
The dynamical condition at the free surface is

' a_mdm
op —SP—TE, ........................ (61).

Now
3plo+gn+ ¢+ {V —am (U~ V)sin (mz - nt)}* — 3 V*=0,
or dp+ac{g+n(U-V)—mV(U-V)}sin(mz—nt)=0.
Similarly
&' + (g — Un) a sin (ma —nt) =0,

1 Phil. Mag. (4), vol. xrIr.
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whence (61) becomes
ge—1)+om(U-Vy+mU*~Tm'=0 ...... (62)

Let W be the velocity of propagation of waves-in water when
there is no wind, then

_ J9(l—a)+ Tm
W— —EO—F—G) ------------------ (63),
or Tm*~m(l+a)W'+g(1l—0)=0.

The condition that the roots of this quadratic in m should be
real is that

s 2 '
w =or>mJTg L=0)eeiiniinenn. (64),

which determines the minimum value of W. This value of W is
less than (479)}, which shows that when water is in contact with
air, it is possible for ripples to travel over its surface.

Substituting the value of W from (63) in (62) we obtain

(1+0) U’——20'VU+0'V’—(1 +a)W'=0,

whence 1 rap i ,\/ { “dx o-)’} ............ (65).

We shall now discuss this equation.

Case (i). V< WyQ +0s)/o.

In this case both values of U are real, and one of them is
positive and the other negative; hence waves can travel either
with or against the wind. Moreover since the positive value is
numerically greater than the negative value, waves travel faster
with the wind, than against the wind; also the velocity of waves
travelling against the wind is always less than W.

Case (ii). V> W/ +0)/o.

In this case both values of U if real, are positive; hence waves
cannot travel against the wind.

Case (iii). When V< 2W, the velocity of waves travelling
with the wind is > W; when V' >2W this velocity is < W; and
when V'=2W, the velocity of waves travelling with the wind is
undisturbed.

Case (iv). If V> W (1 + ) o % both values of Uare imaginary
which shows that the motion is unstable.
12—2
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Waves in Ice of Uniform Thickness Resting on Water.

415. If the upper surface of water be covered with ice and if
any disturbance be given to the water, the elasticity of the ice will
cause waves consisting of lateral vibrations to be propagated along
it.

Let L be the flexural rigidity of ice, o the mass of a section of
unit of area, the equation of motion of the ice is

ot=—L 5 tp i (66).

Let E be Young’s modulus of elasticity, e the thickness of the
ice, then neglecting the slight difference between the density of
water and ice, we have

L=%4eE, o=ep.
Let the velocity potential of the water be
¢ = A cosh m (z + h) cos (mz — nt),
then ¢ =— Amn™ sinh mh sin (mz — nt),
and &p + gp&+ pAn cosh mh sin (mz — nt) =0.
Substituting in (66) we obtain
(e + m™ coth mh) U* = 4¢*m’E + gp/m?,
- e E/Np + g\ /27
2me/\ + coth (2arh/A) "

It may be stated that ice was the first substance for which an
experimental determination of E was attempted (see Young’s
Lectures on Natural Philosophy).

Further examples of waves in water covered with ice will be
found in Prof. Greenhill’s Article on Waves.

or U

In addition to the papers referred to in the text, the reader
may consult the following authorities.

Cauchy, Mém. des Savants étrangers, vol. 1. 1827,

Poisson, Mém. de U'Institute, vol. 1. 1816.

Green, Trans. Camb. Phil. Soc. 1838.

Kelland, Trans. Roy. Soc. Edin. vols. x1v. and xv.

Lord Rayleigh, ¢ On Progressive Waves,” Proc. Lond. Math. Soc. vol. 1x.

Lord Rayleigh, ‘‘The Form of Standing Waves on the Surface of Running
Water,” Ibid. vol. xv.
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Lord Rayleigh, “ On the Vibrations of a Cylindrical Vessel containing Liquid,”
Phil. Mag. June, 1883.

8ir W. Thomson, *“On Stationary Waves in Flowing Water,” Phil. Mag. (5),
vol. xx11, pp. 353, 445, 517 ; and vol. xxm1. p. 52.

Sir W. Thomson, “ On the Front and Rear of a Free Procession of Waves,”
Ibid. vol. xxm1. p. 113.

Sir W. Thomson, ‘‘On the Waves produced by a Single Impulse in Water
of any Depth,” Ibid. p. 252.

Greenhill, “ On Wave Motion in Hydrodynamioes,” Admerican Journal of Mathe-
matics, vol. Ix.

An account of the prineipal memoirs on wave motion is given by Saint-Venant,
in an article, “De la Houle et du Clapotis,” Annales des Ponts et Chaussées,
May, 1888.

EXAMPLES.

1. A liquid of infinite depth is bounded by a fixed plane
perpendicular to the direction of propagation of the waves. Prove
that each element of liquid will vibrate in a straight line, and
draw a figure representing the free surface and the direction of
motion of the elements, when the crest of the wave reaches the
fixed plane.

2. Prove that the velocity of propagation of long waves in a
semi-circular canal of radius @ and whose banks are vertical, is

' 3 (mga)t.

8. If two series of waves of equal amplitude and nearly equal
wave length travel in the same direction, so as to form alternate
lulls and roughness, prove that in deep water these are propagated
with half the velocity of the waves; and that as the ratio of the
depth to the wave length decreases from o to 0, the ratio of the
two velocities of propagation increases from 4 to 1.

4. If a small system of rectilinear waves move parallel to and
over another large rectilinear system, prove that the path of a
particle of water is an epicycloid or hypocycloid, according as the
two systems are moving in the same or opposite directions.

5. If a cylinder is bounded by r =a, and § =0, =§7|;, prove
that if » is the least number of oscillations per second in a liquid
of depth A in the cylinder,

¢=4 (fr)™ {(r)™ sin kr — cos kr} cos 36 cosh kz cos 2mrnt
where (8 — 2k'a”) tan ka = 3ka, n'=gk tanh kh/4m*.
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6. A fine tube made of a thin slightly elastic substance is
filled with liquid; prove that the velocity of propagation of a
disturbance in the liquid is (A@/ap)!, where @ is the internal
diameter of the tube, @ its thickness, A the coefficient of elasticity
of the material of which it is made, and p the density of the liquid.

7. A circular canal of radius @ and of breadth very small
compared with a, has its sides vertical and contains liquid of
depth d. An isosceles right-angled prism whose length is equal
to the breadth of the canal, floats immersed to a depth b in the
liquid with its parallel edges coinciding with the radii of the canal,
and its hypothenuse horizontal. If the prism be suddeuly removed
without disturbing the liquid, show that the velocity potential of
the resulting motion is

gbt/27a + 2 (2g)hat/n} . 3 sin* nb/2a . (sin 2nd/a)
x coshn (z + d)/a . cos nf sin (gna™ tanh nd/a)* t.

8. A horizontal rectangular box is completely filled with
three liquids which do not mix, whose densities reckoned down-
wards are o, g, g,, and whose depths when in equilibrium are
L, 1,, I, respectively. Show that if long waves are propagated at
their common surfaces, the velocity of propagation ¥ must satisfy
the equation

{(‘rx/lx + ce/la) v —g(O',— 1)} {(‘rsﬂt + a'a/l,) V- g("a —a's)} =°'2’ V‘/ls"

9. A given mass of air is at rest in a circular cylinder of
radius ¢ under the action of a constant force to the axis; show
that if the force suddenly cease to act, the velocity potential at
any subsequent time varies as

J,(kr) .
3 W sin kat.
where a is the velocity of sound in air, and the summation extends
to all values of k satisfying J, (kc) = 0, and the square of the
condensation is neglected.

10. Prove that liquid of density p flowing with mean velocity
U through an elastic tube of radius a, will throw the surface into
slight stationary corrugations, of which the number per unit of
length is
(2paU* = )/ 2mwal)},
where A is the modulus of elasticity of the substance of the tube,
and T its total tension.
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11. The radius of a solid sphere surrounded by an unlimited
mass of air is given by R (1 + a sin nat), where a is the velocity of
sound in air. Show that the mean energy per unit of mass of air
at a distance » from the centre of the sphere due to the motion of
the latter is

i n'd’ R (1 + 2n*r*)[r' (1 + n°R?).

12. A stream of uniform depth and uniform width 2a flows
slowly through a bridge consisting of two equal arches resting on
a rectangular pier of width 2b, the bridge being so broad that the
liquid flows under it with uniform velocity U. Show that after
the stream has passed the bridge, the velocity potential of the
motion will be

(¢ - b) Uz/a + 2Ua/*. £ 0™ ¢~ ™/ sin nwrb/a cos nmy/a,

the axis of z being in the forward direction of the stream, and the
origin at the middle point of the pier.

13. Prove that the velocity potential
¢ =A (A + 27%*/\) sin 27 (vt — 2)/A

satisfies the equation of continuity in a mass of water, provided
the ratio y/\ is so small for all possible values of y that its square
may be neglected. Hence prove that if the water in a canal of
uniform breadth and uniform depth %, be acted upon in addition
to gravity by the horizontal force Ha™ sin 2 (mt — z/a) where H
and m are small and a is large, the equation of the free surface
may be of the form

HEk
y=k+ Wcos2(mt — z/a).

14. Prove that in order that indefinite plane waves may be
transmitted without alteration with uniform velocity a in a
homogeneous fluid medium, the pressure and density must be
connected by the equation

P—p= agpo’ (Po—‘ - P—l)’

where p,, p, are the pressure and density in the undisturbed part
of the fluid.
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15. Two liquids of density p, p' completely fill a shallow pipe;
prove that the velocity of propagation of long waves is

_9(o—p) A4’
b (& + 4p)
where 4, A’ are the areas of the vertical sections of the two

liquids when undisturbed, and b is the breadth of the surface of
separation.

16. If the upper liquid were moving with mean veloéity U,
and there is a surface tension 7, prove that the wave length is
determined by the equation

4Ta'IN'=b (pU'[A +p'U"[A)) — g (p — p).

17. A rectangular pipe whose faces are horizontal and vertical
planes, is completely filled with » + 1 liquids; show that the
velocities of propagation of waves of length A at the surfaces of
separation of the strata are given by the equation

4, -B, ..
-B, A4,-B, .. ..
-8B, A4,-B,.. .. .. .. ..
-B, A, -B, .. .. .. |=0,
_Bu-l A"_‘—B,‘
.. =B, A,
where .
A, =2\ (p,,,, coth 2wh,, /N + p,, coth 27h_/N) ~ g Py — Pu) B
= 2mv'/\ cosech 2mh /A

and A, is the equilibrium thickness of the stratum p,,

In particular if p, =mo, and h_ =ma, then the 2n values of
v are included in the formula
v =+ §(ga)* sec ymm/(n + 1),

where m is supposed to assume the values 1, 2, 8 ..., n, and A the
wave length is supposed very large compared with na.

18. If there be an infinite film in a horizontal plane, separating
two heavy liquids of considerable depths, which are flowing in the
same directions with velocities ¥, V' respectively between two
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horizontal planes, prove that the velocity of propagation of waves
of length A in the direction of the stream, is given by

c(v=V)+d (v=V')=(¢'— o) g\ 27 + 27T/,
where o, o’ are the densities of the upper and lower liquids
respectively, and T is the tension of the film.

19. If the bottom of a horizontal canal of depth A be con-
strained to execute a simple harmonic motion, such that the vertical
displacement at a distance # from a given line across the canal and
perpendicular to its length, be given by k cos m (z — vt), k being
small ; show that when the motion is steady, the form of the free

surface is given by
S

kv
y—h+chosm(w—vt).

20. A mass M of liquid is at rest under the action of its
surface tension 7. Show that if it be thrown into small vibrations
of the type of a zonal harmonic of order s, the time of a small
vibration will be

{n (n —?1”)%!» +2) T}"

21. Prove that upon a shore sloping at an angle = below the
borizon, a possible state of fluid motion is represented by the
velocity potential :

¢ = A sin nt {¢ % sin az — /3¢ VI 005 44 (2 /3 — )
+ etV gin La (2 /3 + 7))
and that the corresponding current function is
Y = A sin nmrt {e"* cos ax — ¥/3 e P YTV gin 1a (2 W3 — 1)
—*E="Vd oog 1a (243 + ).
Prove also that if the motion is small and takes place under

the action of gravity,
ga =n'mr’.

22, A shallow trough is filled with oil and water, the depth
of the water being k& and its density o, and that of the oil being
h and its density p. Prove that the velocity of propagation v of
long waves is

v/g = § (b + k) + § {(h — k) + 4hkp/a}t.
(Note that there may be slipping between the oil and water.)
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23. If water is flowing with velocity proportional to the
distance from the bottom, ¥ being the velocity of the stream at
its surface, prove that the velocity of propagation U of waves in
the direction of the stream is given by

U-V)-VvU-7V)W/gh-W=0,
where W is the velocity of propagation of waves in still water.

24. Suppose that an expanse of liquid is originally still, and
plane aerial vibrations of wave length A and velocity v in air of
density p’, to impinge on the surface at an angle 8; prove that
when the motion of the system has become periodic, we may
represent the displacement of the incident and reflected waves of
air, and the displacement of the surface by

(i) asin{m(zsin B+ zcos B) — nt —aj,

(1) asin {m (zsin B —zcos B) —nt + a},

(iii) b cos (masin 8 — nt),
respectively, where m = 2w/\, n = 2mwv/\: prove also that a the
change of phase is given by

2

p'cota= ( Nv? sin’ B8 + g%g,) cos B8 — p cot B coth (2hA™ sin B),

where 7' is the surface tension.

25. Prove that with cylindrical coordinates =, 6, 2, a possible
state of liquid motion inside a right circular cone of vertical angle
2a is given by the velocity potential

¢ = Azw" cos né cos 2mpt,

where n = tan® a, and that if the axis of the cone be vertical and
h be the mean depth of the liquid, the frequency p of such wave
motion supposed of small displacement, is given by

4'1r’p’k =g.

26. Two liquids of densities p, p’' each of which half fills a pipe
of which the cross section is a square with a vertical diagonal of
length 2h, are slightly disturbed. Neglecting the disturbing effect
of the boundary in the neighbourhood of the surface of separation,
prove that the velocity of propagation of progressive waves along
the pipe is given by the equation

Us= an(’(’—P—_*_p—p),) (tanh or coth) mh.
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27. A soap bubble of finite thickness in free space with air
inside it, is performing small oscillations radially under the action
of its surface tension 7' and the pressure of the contained air.
Prove that the length [ of the simple equivalent pendulum for
vibrations so slow that the contained air may be supposed to obey
Boyle’s law, is given by the equation

3Ma®b’g = 8lwT (b* + ab + a) (2b° + ab + &°) (b* + ab — a7),
where a and b are the internal and external radii of the shell and
M its mass.

28. Prove that in the case of standing waves across a canal of
triangular section, whose sides slope at an angle }4r to the horizon,
the equation of continuity and the boundary conditions are satisfied
by taking
¢ = cost(g/l)} {sinh m (2 — &) cos ma — sinh ym (zv/3 + z + 2a)

X co8 ym (z — 24/3) + sinh im (2v/3 — 2 — 2a) cos }m (z + 2v/3)},

the axis of  being measured across the canal, and the origin being
taken in the line of intersection of the sides.

Prove also that if 4 be the depth of the canal, ml, a and mk
are determined by the equations

ml=tanh m (kA —a), 1—m'l*=mly3 cot mhy3,
and one or other of the equations
cosh 8mh = — cos mha/3 + 2 sec mh4/3,
3 cosh 3mh = — cos mhy/3 — 2 sec mhv/3.



CHAPTER XVIIL
STABLE AND UNSTABLE MOTION'.

416. In Chapters XIII. and XIV. we came across several
instances in which vortex sheets and motions involving surfaces of
discontinuity are unstable; and there is a considerable amount of
evidence which supports the conclusion that when no forces are in
action, all motions involving vortex sheets are unstable, No
general proof of this proposition appears as yet to have been given;
and it is important to observe that it certainly is not universally
true when the liquid is acted upon by any external forces. This
may at once be shown by considering the waves propagated at the
surface of separation of two liquids, which when undisturbed are
moving . with velocities V, V.

Putting &, ¥ for m coth mh and m coth mh', we have shown in
§ 891 that the velocity of propagation is given by the equation

kp (V= UP+ Ko (V= Uy =g (p—p).

The condition of stability is that the roots of this quadratic in
U should be real, and is therefore

g (kp + k") (o — p') - K¥pp (V= V)*> 0.
It therefore follows that if p > p/, that is if the lower liquid is

denser than the upper liquid, the motion may be stable; but if no
forces are in action so that g =0, the motion will be unstable.

1 This chapter is taken from the following three papers by Lord Rayleigh,
¢« On the Instability of Jets,” Proc. Lond. Math. Soc. vol. x.

«On the Stability or Instability of certain Fluid Motions,” Proc. Lond. Math.
Soc., vols. x1. and xix.
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417. If no forces are in action and both liquids are of
unlimited extent so that A=A’ = o, the equation for determining

U becomes
pV=Ur+p (V-=Ul=0.cccc.c0cue... (1).

The initial form of the surface of separation is %= a sin mz,
where m is a real quantity, and its form at any subsequent time is
determined by the equation 9 = a sin (mz — nt).

The roots of (1) are
U PV +eV £ Jod (V=T

’

p+p
hence U and therefore n is a complex quantity. Putting
U=a+B=n/m,

and rejecting the imaginary part, the equation of the surface of
separation becomes

n=>b sin m (v — at) cosh mpt,

which indicates that the motion is unstable. The rejected
imaginary part shows that if the initial form of this surface was
n=>b cos maz, its equation at any subsequent time would be

n=bcosm (z —at) cosh mpBt.
There are three cases worthy of notice.
(i) Ifp=p, V==7, so that the densities of the two liquids

are equal, and their undisturbed velocities are equal and opposite,
a=0, 8=V, whence

7 = b cosh m Vi sin ma.
(ii) Let p=p/, V'=0, then a=3V, 8=+4V, and
n = b cosh m Vtsin m (x — 4 V),
hence the waves travel in the direction of the stream, and with

half its velocity.

(iii) Let p=p’, V=7". In this case the roots are equal, but
the general solution may be obtained by putting V'= V(1 +4)
where « ultimately vanishes; we thus obtain

n=>bsin m (x — Vt)cosh § Vet — ¢b cos m (z — V) sinh § V.
' Putting 4:bVy=c, and proceeding to the limit we obtain
n = bsin m (z — Vt) — ct cos m (x — Vi).
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If =0, when ¢t =0, we must have mb¥V = — ¢, whence
n=>bsinm (z — Vt) + dbmVt cos m (z — V).

The peculiarity of this solution is, that previously to displace-
ment there is no real surface of separation at all. Hence if we bave
a thin surface such as a flag, whose inertia may be neglected,
dividing the air, it appears from the last equation that (neglecting
changes in the density of the air) the motion of the flag will be
unstable, and that it will flap.

418. We shall now investigate the motion of a jet of density p
and width 27, which is flowing with velocity ¥, and is surrounded
by fluid of density p’ which is at rest.

In solving problems of this class, it is often convenient to
employ complex expressions, and in our final results to reject the
imaginary parts; we shall therefore suppose that both the surfaces
of separation are represented by an equation of the form

unz+ont

n = ae +1

This is equivalent to supposing that the disturbance is such
that the sinuosities of the two surfaces of the jet are parallel.

Let the velocity potential of the jet be
¢ = (4 cosh mz + B sinh mz) e ™™ 4 Vaz,
and that of the surrounding liquid on the upper side be
@' = Cemrtmimmtml
The kinematical conditions at the surfaces of separation give
A =0, B=wa(n+mV)/mcoshml, C=— ma/m.
The dynamical condition of equality of pressure gives
pB (n+ mV)sinhml~p'Cn=0,
whence p (n+mV) tanhml + n®p’' = 0.

The values of n determined by this equation are always
complex unless p’ is zero. When p=p/,

—mV tanh ml + ¢mV (tanh ml)}

1 + tanh mi

When ml is small, we have approximately

n=ae" ™7™ cos m (Vmlt — o).
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419. The motion of a straight cylindrical jet, whose cross
section is a circle, and which is surrounded by liquid which is at
rest, has also been investigated by Lord Rayleigh, and the results
are similar to those already obtained for a two-dimensional jet. If
z be measured along the axis of the jet, the displacement of any
point on its surface can be shown to be

@ =ae**" cosm (Vi — 2),

where u' =m'a’ {log 8/ma + L @}

420. It is a matter of observation, that when a jet of water
issues continuonsly from a small orifice, the continuity of the
liquid ceases at a certain distance from the orifice, and the jet
becomes disintegrated into drops. The preceding investigations
partially explain this phenomenon, since the jet is necessarily
surrounded by air, and we have shown that the motion in such a
case must be unstable. It must however be admitted that the
results obtained are only rough approximations, since we have
supposed (i) that the air by which the jet is surrounded is incom-
pressible and at rest, (ii) that the liquid of which the jet is
composed is free from viscosity, (iii) we have neglected the
existence of capillarity at its surface. When we consider the
motion of a viscous liquid, it will be shown that a surface of
discontinuity, if it ever could be formed, would instantly disappear,
and that molecular rotation would be propagated on either side of
the surface according to the law of propagation of heat. Hence
our results are necessarily imperfect. We shall return to this
point hereafter; and shall now proceed to investigate the effect of
surface tension on a cylindrical jet moving in vacuo.

421. Taking the axis of z along the axis of the cylinder, let
us suppose that the surface of the jet at time ¢ is

r=a + acoskz,
where a is a small function of the time, and « = 27/A.
Let o be the area of the surface of the jet included between
unit of length ; then
A
o =2m\" [ (a + a cos 2wz/\ + a"c’sin® 2mwz/A) dz
o

=Ta(2F 3 i (2)

approximately. In this expression a is not absolutely constant;
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its value is determined from the fact that the volume V¥ included
between unit length is constant, whence

. V=mwa®+ima....oooo (3).
Now (2) may be written
o =2mra + §wa’/a+ fmwa’ («'a’ —1)/a.
Substituting the value of a from (3) in the first two terms we
obtain
c=2 (@ V) + ma’ ('a* - 1)/a.
If o, be the value of & for the undisturbed motion, we have
g—o,=%mr (x'a’ =1)/a.....cccccoonn (4).
If T, denote the surface tension, the potential energy per unit
of length from the position of equilibrium is
V=—17Ta'(1—Ka’)a...cccuccenninnnnnn. (5).
Since the motion is symmetrical with respect to the axis of 2,
Laplace’s equation is
d'¢ d'¢ 1d¢o

& Trar

and since ¢ must vary as cos xz, the proper solution is
¢ =AI (xr) cos kz.

The coefficient A4 is determined from the fact that the normal
velocity at the surface of the jet is equal to @ cos xz, whence

Axl' (ka)=a,
and therefore
_al, (xr)
b= T’ (xa) coS K2,

Taking the density of the liquid to be unity, the kinetic
energy per unit of length is

T= @\ f * 9mag (dp/dr), de
o 1, (ka)
_ 3.3 4o )
= ?”“ * xal’, (xa)’
whence by (5) the equation of motion is

a’d’l, (ka)
xal’, (ka) ~

T2’ (1 — £'a’) = const.
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Differentiating with respect to #, and then putting a = 4%, we
obtain
¢ T (1- /:’a,’) xal’, (m).
i a*l, (ka)
If ka > 1, q is imaginary, and the motion is stable ; hence from
(4) it follows that if the surface is greater after displacement than
before, the motion is stable; but if otherwise the motion is
unstable. Writing xa = , the instability will be greatest when A
has such a value that ¢ is a maximum.

Since . -
@ a*
LE=ltg+gstywe’
the value of ¢g*a*/T, will be found to be

. L 112° 192°
37 (1-4) {1'?+2'.3‘2T3+2".3.5+“‘}’

7 25 91 .
or }{z’—%w‘+ﬁz”—éﬁw°+ m-’ﬂo‘f'.}
Differentiating we obtain
7 100 91
1 —-2\’6'4--2—4!0‘— —“Z—w—(vp+mzs+---= 0.

If all the terms but the first three be neglected, the quadratic
gives 4’ =-4914; and if this value be substituted in the next two
terms, the equation becomes

98928 — §4° + Jga* = 0,

whence o ="4858.
The corresponding value of A is given by
A=4508 x 2a,

which gives the ratio of the wave length to the diameter, for the
kind of disturbance which leads most rapidly to the disintegration
of the cylindrical mass. The corresponding number obtained by
Plateau from some experiments by Savart is 438, but as his
estimate involves a knowledge of the coefficient of contraction of a
jet escaping through a small hole in a thin plate, it is probably
liable to a greater error than its deviation from 4-51.

Further information on the subject of jets in connection with
hydraulic machinery, will be found in Prof. W. C. Unwin’s article
on Hydraulics, in the Encyclopaedia Britannica.

B. IL 13
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Stability of Steady Motion between Two Parallel Planes’.

422, Let the liquid be bounded by two parallel planes, and be
moving with velocity U parallel to those planes; also let the axis
of « lie in one of the planes, and be parallel to the direction of U.
If the motion is steady, U must be a function of y alone, and the
vorticity {=— 3dU/dy.

Let a disturbance of any kind be communicated to the liquid,
subject only to the condition that the resulting motion is in two
dimensions; and let U+u, v, {+¢ be the component velocities
and vorticity during the disturbed motion. Then

af dé‘ C
du + dv dv du

d——‘; @ = 0, 2( = ‘—1; - d_y .
If we assume that 2 and ¢ enter into u, v, ¢’ in the form of the
factor exp (unt + kx), the preceding equations may be written

c(n+kU) ¢ =3vd*U/dy’, wu+dv/dy=0, 28 = kv —du/dy.

Eliminating u and {’ we obtain,

(2+70) (% ~ k) = ‘%{fu ................. (©).

423. 'We must now determine the boundary conditions.

At the surfaces of the bounding planes we must have v = 0.
It may also happen that the vorticity in steady motion suddenly
changes as we cross some plane, and we must therefore find the
conditions to be satisfied at the surface of separation. Denoting
by A the difference between the values of the quantities on either
side of this surface, the kinematical condition is

Av=0.cceerrriiriniinniniiinnienne, ().
The dynamical condition which is the analytical expression for

the fact that there must be no discontinuity of pressure, may be
obtained by integrating (6) across the surface; we thus obtain

n dv aU
(E+U)Ad—y—vAd—y—O ................. (8).

1 Lord Rayleigh, Proc. Lond. Math. Soc. vols. x1. and xIx.
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424. We shall now apply these equations to determine the
conditions of stability of a mass of liquid bounded by the planes
y=0,y=a+b+c, and which consists of three layers of thickness
a, b, ¢, the vorticity being constant but different throughout each
layer.

Let U=0 along Oz, and let U, U, be the values of U at the
planes y=a, y=a +b. Since {is constant, d*U/dy" = 0, hence if
n/k + U is not zero, (6) becomes

dv

&?—70‘11:0,

the solution of which is
v=A cosh ky + Bsinh ky.

Since =0 when y =0, we must have at the first layer

v=v,=sinhky..............c......... 9),
in the second
' v=v,=v,+ M sinhk(y—a)............... (10),
and in the third
v=v,=v,+ M;sinhk(y—a-">)............ 11).

The condition that v=0 when y =a +b +c, gives
M, sinh kc + M, sinhk (b+c¢) +sinhk (a +b+¢)=0...(12).

If we denote the values of AdU/dy at the two surfaces by A,
and A, respectively, the condition (8) gives

(n+kU)M —A sinhka=0...............(13),
(n+%U,) M,— A, {M, sinh kb + sinh k (@ + b)} = 0...(14).
Eliminating M,, M, between (12), (13) and (14), we shall find
that » satisfies the quadratic
An*+ Bn+C=0.............. eerees (15),
where
A=sinhk(a+b+c)
B=k(U,+U)sinh k(a+b+c)+ A sinhkasinhk(b+c)
+ A, sinh kcsinh k (a +0) } , ..(16).
C=kU,U,sinhk(a+b+c)+kU,A, sinh ke sinhk(a+b)
+kU,A, sinh kasinhk (b + ¢)+A,A,sinhkasinh kbsinh ke
13—2
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The condition that the roots of (15) should be real, is that
B* — 4AC should be positive. Now,

B*—4AC={k(U,~ U,)sinh k (a + b+ c) + A, sinh ko sinh k (b +¢)
— A, sinh kesinh k (@ + b)}* + 4A A, sinh*ka sinh*ke......(17).

If therefore A, A, have the same sign, so that the curve
expressing U as a function of y is of one curvature throughout, the
roots are real and therefore the disturbed motion is stable.

425. Let us now suppose that the breadths of the layers a and
¢ are equal, and that their vorticities are equal and opposite, and
that the layer b is without vorticity ; also let ¥V be the velocity of
the middle layer. If we suppose the velocity of the liquid to be
zero at the walls, which we may do without loss of generality, we
shall have

U=U,=V, A =A,=-V]/a,
“whence B* — 4AC = 4A* sinh*ka,
indicating stability. Also

V {sinh ka sinh & (a + b) + sinhka}
a sinh & (2a + b) ’

which determines the relation between # and k.

n+kV=

426. In the next place let us suppose that the velocities are
equal and opposite on either side of the middle layer; then the
velocities in steady motion, in the first, second and third layers
will be respectively

v,=A{y-a)+ 7V, v,=V(1-2y/b+2a/b), v,=E(y—a-b)-7V,
also if the velocities at the bounding planes are equal and opposite
we must have 4 = E. We thus obtain

Uy==-U,=V, A=—A7=4uV,
where p=—A/V —2b". From (16) it follows that B=0, and
(15) may be written

_n* _ {psinh zsinh y + ksinh (@ + y)}* — ¥ sinh%
24 k* sinh y sinh (22 + y) ’

where & = ka, y = kb.

From this expression it is easily seen that n® is positive if u is
positive ; but if u is negative the motion will be unstable unless
4
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the numerator of the above fraction is positive. Writing — » for
K, this requires that
{k (coth z + coth }y) — v} {k (coth z + tanh }y) — v} > 0...(18).
If we suppose that k£ is very small this becomes
@ +2"=v)(@a'—-v)>0.

Hence if v < a™ the motion is stable, but if a™* + 2™ > » > ™,
the motion is unstable.

When v=a™+ 25 the motion is on the border line between
stability and instability, but it is really unstable ; for proceeding
to a second approximation the first factor of (18) becomes

a4 207 — ita — 3D — v,
which shows that the motion is unstable. Now if U be the
velocity of the hquld in contact with the plane y =0, U=V — Aa,
whence
=—(V-U)/Va-2b".
Hence the final condition of complete stability is that
2Ub > Va.

Steady Motion between Two Concentric Cylinders',

427. We shall now prove that if liquid is in motion between
two rigid concentric circular cylinders, the steady motion is stable
provided the vorticity either continually increases or continually
decreases in passing outward from the axis.

In steady motion let V" be the velocity and @ the vorticity,
then ¥V and o are functions of r alone. Let w, V+v be the
velocities along and perpendicular to the radius vector during the
disturbed motion, » + { the vorticity.

These quantities satisfy the following equations:

20 = ‘g+ ; ........................ 19),
Zf+ u Za—’ + Zgg 0. iiniiiiiiienns (20),
d g:‘) +g 0— R (1),
gr #2412 ZZ Y SRR ©22).

1 Lord Rayleigh, Proc. Lond. Math. Soc. vol. x1.; see also Sir W. Thomson, On
Maximum and Minimum Energy in Vortex Motion, Phil. Mag. June 1887.
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Equation (19) is the equation connecting the velocity and vorticity
in steady motion, and (20), (21) determine the changes in the
velocity and vorticity due to the disturbance.

Let us assume that u, v, { are each of the form F'(r) exp (k0 + ¢nt)
where k is a real quantity but n may be complex. We have to
determine the conditions that n may be real. From (20) and (22)

we obtain
1}&(%+kV) (dv+v+ ) u@=0'

dr dr
and from (21)
d(rv)
Tdr

Putting ru = p and eliminating v, we obtain
(]"c"' V) (d'p +1dp k’p) 2p dw

+dkv=0.

ar* " rdr o r dr’
Let n/k = e+ f, p=a + 3, where ¢, f, a, B are real, then
& 1d k do  (a+1B)
(etrg+n) @r®=230 oty

Whence equating the real and imaginary parts we obtain

d"a lda Fk'a
PR D’{“(V”")*Bﬂd’

g 1dB KB _ 2

d7’+rd€+ = B(V+re)— af} -
where D*=(V +re)*+7°f*. Multiplying the first equation by
783 and the second by ra and subtracting we obtain

d’a d'B dB 2fr
T(BF_ )+’8dr - @ +'B’)dr

Let a and b be the radii of the cylmdncal boundaries, then
since « and B are each zero at the boundaries, we obtain on
integrating between the limits a and b,

o [ @+ S r=0.

If do/dr does not change sign between the limits, every
element of this integral has the same sign, and therefore the
integral cannot vanish unless f=0; when this is the case n is real
and therefore the steady motion is stable.




CHAPTER XIX.
THE THEORY OF THE TIDES.

428. THE phenomenon of the tides is produced, as is well
known, by the disturbing attractions of the sun and moon upon the
ocean. This appears to have been first recognised by Kepler, but
the subject was not investigated mathematically until the year
1687, when Newton® applied the law of gravitation to the explana-~
tion of the tides. He supposed that the ocean covers the whole
earth, and that it assumes at each instant a figure of equilibrium
under the combined attractions of the earth, sun and moon. In
1738 Daniel Bernoulli® extended and improved Newton’s theory,
and the theory of the former is usually known as the Equilibrium
Theory. This theory although it serves to explain many of the
principal features of the tides, cannot be considered satisfactory;
for the problem is essentially a dynamical one, and consists in
finding the forced oscillations of an ocean which is disturbed by the
attractions of the sun and moon. The solution of the dynamical
problem was first effected by the genius of Laplace®, upon the
assumptions that the ocean covers the whole earth, and that its
depth is equal to ! (1 —gqcos® @), where @ is the co-latitude, and 7
and g are constants. The original investigation of Laplace is
however unnecessarily complicated by the use of spherical harmonic
analysis ; it was subsequently presented in a simpler form by Airy*,
but the investigation of the latter contains a criticism on Laplace’s
method of dealing with a certain continued fraction, which occurs

1 Principia, Book 1. Prop. 66, Cor. 19; Book 111. Props. 26 and 27.
2 Acad. des Sciences, Paris, 1738.

3 Mécanique Céleste, Book 1v.

4 “Tides and Waves,” Encyc. Met. Sec. 1.
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in the evaluation of the semi-diurnal tide in an ocean of uniform
depth, which is now generally considered to be erroneous. Laplace’s
procedure was justified by Sir W. Thomson', and the controverted
point has been fully worked out and explained by Prof. G. H.
Darwin®, and it is from the papers of the latter that the following
investigation of Laplace’s theory is taken. A third theory, known
as the Canal Theory, which is due to Airy®, consists in investigating
the tides in a canal coinciding with a small circle upon the earth,
which are produced by a disturbing body revolving about the earth
in an orbit, whose projection upon the earth’s surface is a different
small circle.

In the present chapter we shall discuss these three theories*,

The Equilibrium Theory.

429. In the equilibrium theory, the earth is supposed to
consist of a solid spherical nucleus, whose density is either uniform
or which is composed of spherical strata of uniform density. The
solid nucleus is supposed to be covered with water, which is
disturbed by the attractions of the sun and moon; and it is
required to find the form of the free surface of the water, on the
supposition that at every instant it assumes the form of a surface
of equilibrium under the combined attractions of the earth, sun
and moon.

Since the disturbing attractions of the sun and moon are both
small in comparison with that of the earth, we may consider the
effects of each luminary separately, and the combined effect of
both will be obtained by adding the effects due to each.

Whether the disturbing body is the sun or moon, the earth
may be supposed to be reduced to rest by including amongst the
forces which act upon the ocean, the reversed acceleration of the

1 Phil. Mag. 1875.
2 «Tides,” Encyc. Brit.; Proc. Roy. Soc. 1886.
3 «Tides and Waves,” Encyc. Met. Sec. VI.
¢ For further information, see
Bibliographie de UAstronomie, by Houzeau and Lancaster, Brussels, 1882
which contains a complete list of works upon the subject down to 1881 ;
Thomson and Tait, vol. 1. part mm.;
Reports on Tides to the British Association ;
Thomson, Phil. Mag. 1880.
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centre of the earth towards the disturbing body. This reversed
acceleration is equal to the mass of the disturbing body divided by
the square of its distance from the centre of the earth. We shall
also suppose that the rotation of the earth is annulled, and that
the disturbing body revolves round the earth.

ot

Let E be the centre of the earth, P its pole, Q any point of the
ocean. Let M be the moon, EM =D, ER=r, MEQ =¢; also let
V be the attraction potential of all the forces which act on the
ocean, and let v be the potential of the earth and the ocean.

E

Resolving the force upon an element of liquid at @ along EQ,
we obtain

dV j]%,cos(vr EQM)+d -—%ccsa,

M Decose—r) dv

= —- === CO8 €,
(P + D' —2Dromseft  dr D€

whence V= o +v M, cose+ A...(1).
(1"'+D"—2Drcose)§ D

Since the right-hand side of (1) is a potential function, it is
unnecessary to add a function of ¢, and therefore 4 is an absolute
constant. Expanding and neglecting spherical harmonics of a
higher degree than the second, we obtain

Jg li'l)",’P (cose)+v+ A.

Let @ be the radius of the free surface of the ocean when
undisturbed, a +¢ its value when disturbed, so that g is the
height of the tide. Then ¢ may be expanded in a series of spherical
harmonics whose axis is ZM ; and since the value of ¥ must be
constant at the surface of the ocean, it follows that ¢ cannot contain
any harmonics of the first degree. Also since the depth of the
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ocean is small in comparison with the radius of the earth, it
follows from (7) of § 371 that if we neglect harmonics of a higher
degree than the second,

v=E/r + $mwac (a/r)’e,

where E is the mass of the earth, and o is the density of the ocean.
Hence if p be the density of the earth, the condition that ¥ should
be constant at the surface of the ocean is that

g (1 30') . =Ma’

Vi

5p

and since E/a’ = g, we obtain
= Ma’P,
“TFA-3¢/50)9°
This equation determines the height of the tide upon the
equilibrium theory, and shows that the form of the free surface at

any period is a prolate spheroid, whose longest axis coincides with
the line joining the centre of the earth with the disturbing body.

Since the density of the ocean is small in comparison with that
of the earth, the quantity o/p is usually neglected, in which case
we obtain

430. Before proceeding to discuss this equation, it should be
noticed that owing to the fact that the earth is not entirely
covered with water, the value of ¢ requires correction. A descrip-
tion of the necessary corrections, together with tables containing
the results of observations at various ports, will be found in
Thomson and Tait’s Natural Philosophy, Vol. 1, Part 11, §§ 808—
810 and § 848.

431. Let A be the latitude and ! the west longitude of @;
also let A be the westward hour angle of the moon from Greenwich,
8 the moon’s declination. Then since the angle QPR=h —1, we
obtain from the spherical triangle QPR,

co8 € = sin A sin 8 + cos A cos & cos (h — 1),
therefore
P, (cose) =% (3 cos’e—1)
=1(38in% — 1) (3 sin®\—1)+ 3sinAcosAsin 8cosdcos(h—1)
+§cos™\cos’8cos2(h—1)....cceuniniiniiiiiiiinini, (3).
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A similar equation holds good when the sun is the disturbing
body ; whence writing S, I, &, b’ for the mass, distance, declination
and hour angle of the sun, the height of the tide due to the
combined action of the sun and moon is

t= ‘21—; (1 —3sin"\) {% (§cos’d—-1)+ 1—% (3 cos™® — 1)}

3@’ . M . S . ’ ’
+ —Esm 22 {DT’ sin 28 cos (b — 1) + o sin 28" cos(h —l)} v (4).
3a*

M 9 S g O\ ’_
+4—9cos’)&{l—),cos80032(h—l)+1-)730088 cos 2(A l)}
We shall now proceed to discuss this equation’.

432. Tides of Long Period. The first line of this expression
does not depend upon h—1 or A’ —1, and is therefore independent
of the hour of the day. It depends solely upon the latitude of the
place of observation, and upon the quantities D, I, 8, &. The
quantities D, § depend upon the elements of the moon’s orbit
round the earth, and it will be observed that the value of the first
term due te the moon’s action does not depend upon the sign of §,
and therefore has the same value whether the moon’s declination
is north or south. Also since the moon approximately takes
fourteen days to describe a semi-circle, the effect of the first term
is to produce a fortnightly tide.

The second term of the first line is due to the action of the
sun; it depends upon the elements of the earth’s orbit round
the sun, and produces a semi-annual tide. Both these tides are
known as tides of long period, and are called by Laplace, « Les
oscillations de la premiére espéce.” They vanish in latitude
+ cosec 4/3.

433. The Diurnal Tides. The second line of (4) consists of
two terms each of which depends upon the hour angle of the
disturbing body. The first term gues through all its changes
each time the moon’s hour angle increases by 360°; and the
second term goes through its period when the sun’s hour angle
increases by the same amount. These terms constitute the
diurnal tides, and are called by Laplace, “ Les oscillations de la
seconde espéce.”

1 Airy, Tides and Waves.
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Since h'—l=h—1+h —h, the second line of (4) may be
written

2
i% sin 2\ [{# sin 28 + ﬁs.', sin 28’ cos (' - h)} cos (h—1)

- ;- sin 28’ sin (A’ — h) sin (k — z)] ,

_3a" . m ., S oo
=% sin 2\ [F gin 28+D"° sin® 28
+ %{, sin 28 sin 28’ cos (A’ — h):l cos(h—Il+E),
) SD*sin 28’ sin (k' — h)
MD™sin 25 + 8D sin 28" cos (b’ — k)"

This tide always vanishes at the equator where A = 0, and also
at the poles where A =90° and its greatest value is in latitude 45°.

where tan £ =

For any particular point on a meridian, the tide will be highest
when h—l+ E=0, or e+ E=0. Hence if e is positive, that is if
the moon is west of the place of observation, £ is negative, and
therefore if &' is positive A" — h is negative. Also tan £ and there-
fore £ is always a small quantity, hence just before new moon and
full moon high tide occurs shortly after the moon has passed the
meridian. But if £ is positive e is negative, and therefore just
after new moon and full moon high tide occurs before the moon
passes the place of observation.

Let us now examine how this tide depends on 8. Since S/D*
is small in comparison with M/D®, it follows that tan £ is positive
if 8, &, A’ —h are positive. Now suppose that the moon crosses the
equator, then & will change sign, and E will change rapidly from a
small angle through 47 and then to an angle not much less than .
Hence ¢ will rapidly change to m—¢, and high water instead of
occurring when the moon is near the meridian of the place of
observation, will take place when the moon is near the meridian
passing through the antipodes.

434. The Semi-diurnal Tides. The third line of (4) consists
of two terms each of which depends upon twice the hour angle of
the disturbing body, and goes through all its changes every time
the hour angle increases by 180°. These terms constitute the
semi-diurnal tides, and are called by Laplace “ Les oscillations de la
troisiéme espéce.”
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This term may be expressed in the form

2 2
% cos™\ {% cos'd + g—; cos*d’

2MS
+ D5 8
SD'"™ cos’® sin 2 (A’ — h)
MD™cos’d + SD™® cos’® cos 2(h' — h)”

For different latitudes this tide has its greatest value at the
equator where A=0, and vanishes at the poles where A=90"
For different positions of the moon it is a maximum when
K —h=0 or m, that is at full moon and new moon; and it is a
minimum when ' —h=4m or §m, that is when the moon is in
quadratures.

The time of high water at any place is found by putting
W —h=—4F or e=—4F; hence when $w >~ —h >0 and when
§m>h'—h>m, € is negative, and therefore between new moon
and quarter moon, and between full moon and three-quarter moon
high tide occurs before the moon has passed the place of observa-
tion; and the contrary is the case between quarter moon and full
moon and between three-quarter moon and new moon.

8 cos’®’ cos 2 (h'— h)} cos{2(A' — k) + F},

where tt);n F=

Laplace’s Theory'.

435. The celebrated theory of the tides which is due to
Laplace, deals with the problem by means of dynamical principles.
The problem to be solved, consists in finding a solution of the
general equations of motion applicable to the case of the forced

. oscillations of a frictionless liquid, which completely covers a solid
spherical nucleus, and whose equilibrium is disturbed by the attrac-
tion of a distant body. The depth of the ocean is supposed to be
very small in comparison with the radius of the earth, and the
height of the waves small in comparison with their lengths, in
other words the waves are assumed to be long waves in shallow
water, and the equations determining the oscillations of the ocean
are obtained ; but the mathematical difficulties of integrating them
are so great, that Laplace was compelled to assume that the depth
of the ocean is proportional to 1 — g cos’d, where 8 is the co-latitude

1 Mécanique Céleste, Livres 1. and 1v.
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and q is a constant; and in the case of the semi-diurnal tides it is
necessary to suppose that g is zero or unity.

The method of procedure adopted in the present section is
somewhat different from Laplace’s, and is taken from Prof. G.
H. Darwin’s' investigations, which were suggested by Sir W.
Thomson’s papers in the Philosophical Magazine®.

436. We must first find a suitable form of the equation of
continuity.

Let a be the radius of the earth, ¢ the depth of the ocean, 8
the co-latitude, and ¢ the longitude of any point P on its surface
when undisturbed. Let 6 +u, ¢ +v, a +v+ D be the co-ordinates
of the same point during the disturbed state. Let @ be a point
near P, whose undisturbed co-ordinates are a +v, 0 + &6, ¢ + &¢.

E

Let Pp, Q¢ be the meridians, and Pg, Qp the parallels of
latitude passing through P and @ ; and consider a small column of
liquid which is bounded by the bottom of the ocean, the free
surface, and the four planes drawn through E the centre of the
earth and the arcs Pp, pQ, Qg, ¢P respectively.

The volume of this column of liquid when the ocean is -
undisturbed is
atysin 0808 ..........ceevevenneennnn. (5).
The volume of this element when the ocean is disturbed, will
be found by changing @ and ¢ into 6 + u, ¢ + v, and hence y must
be changed into + P+ udy/df + vdy/d$ ; whence the volume is
equal to

(y+b+u%+vd¢)sln(0+u) (1+du)( ¢) 8054 ...(6), |

1 Proc. Roy. Soc. 1888 ; and Encye. Brit., Art, ¢ Tides.”
2 Phil. Mag. 1875.
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equating (5) and (6) and neglecting squares and products of small
quantities we obtain,

b+ d(%u) dé«; ) +qucot@=0............ .

437. In order to obtain the equations of motion of the ocean,
we shall reduce the centre of the earth to rest, and we must there-
fore include amongst the impressed forces which act upon individual
particles of liquid, the reversed acceleration of the centre of the
earth. This reversed acceleration is equal to the attraction of
the sun and moon upon a unit particle situated at the centre of
the earth. We must also suppose the sun to be revolving round
the earth.

If therefore r, 6', ¢’ are the co-ordinates of an element of the
ocean in its disturbed position; w’, u, v" the component velocities
of this element relative to the centre of the earth in the directions
in which 7, &, ¢ increase, the relative accelerations are

' — v'6, + w6, in the direction of &,
-wé +u8, , w ¢
w—-vl,+v6, , » T
If n be the angular velocity of the earth’s rotation
v =rf, v=r(§ +n)sin @, w =+,
0,=— (¢ +n)sin 6, 6,=6, 6,=(¢’'+n)cos®,

and the preceding expressions for the component accelerations
become

d%(ré’) —r (¢’ +n)?sin ¢ cos ¢ + i@,

%{r({;’ +n)sin @} + 7 (¢ + n)sin @ + v (¢’ + n) cos 7,
#—rf —r (¢ +n)sin* .
But @ =60+u, ¢"=¢+v, where 0, ¢ are the co-latitude and
longitude of the element in its undisturbed position; also since the
vertical motion is slow in comparison with the horizontal motion

(since the oscillations are long waves), we may neglect #, #, and
the above expressions become

—r(n* + 2nv) 8in*@ in the direction of 7,
rii —r(n'+2n9)sinfcos § » » 8,
risin @+ 2rnicos§ , » P
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Hence the equations of motion are

ldp dV 3

pdr=dr + r (n* + 2nv) sin’d

ldp_dV e () o\ e
,_)Eo._ae—r'u+r’(n + 2n9)sin G cos @ } ............ (8),
’—lﬂ%’; = :—ii—z-r’v 8in’*d — 2r*nit sin @ cos @

where V is the attraction potential of the forces.

According to the theory of long waves explained in Chapter
XVIL, the pressure is assumed.to be equal to the hydrostatic
pressure which would exist if liquid had no motion, and were
under the action of forces which would preserve the form of its
free surface unaltered. It therefore follows from § 369, or directly
from (8) by putting %, 4, v, ¥ equal to zero and multiplying by dr,
df, d¢ and integrating, that

plp=V + in'r*sin*d + const.,
where V" is the potential of the fictitious forces which would produce
an equilibrium tide of height §. By (1) and (2) it follows that
the variable part of this potential is gbr*/a’ + E/r, whence

plp = ghr’/a* + E[r + §n’r® sin*0 + const.

Now 7V is the potential of a system of forces which would
produce an equilibrium tide of height ¢, whence

V =ger’/a’® + E|r + const.,
and therefore
plp — V=g —r¢) r’/a’ + §n’r’ sin’d + const.

Substituting this value of p/p — V in the last two of (8) and
putting au=§, av=1, so that £, nsin @ are the co-latitudinal and
longitudinal displacements, and remembering that in the small
terms we may put 7 =a, we obtain

f—2nﬁsin0cos€=—%gp (h-e

58in 0 + 2nEcos § = — a_.égl—_e ‘% (bh—e)
and (7) becomes
ba sin 6 + gg (yE sin 6) + ;Z—I; (ynsin ) =0...... (10).

The solution of these equations determines the oscillations of
the ocean.
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438. The value of ¢ is given by (4), and from this value it
appears that ¢ consists of three sets of terms. The first set which
in the equilibrium theory gives rise to tides of long period vary very
slowly, and it is known from physical astronomy that these terms
can be expanded in a series of terms of the type A cos (2nft +«);
the second and third set respectively involve ¢ and 2¢; it there-
fore follows that ¢ can be expanded in a series of terms of the
type ecos (2nft + k¢ + a), where e is a function of the co-latitude
alone and of the elements of the orbit of the disturbing body.

It also follows from (4) that the tides of long period do not
depend on the longitude, hence k=0,

e=FE (} — cos’d) }
e=E (} — cos’d) cos (2nft + a)
In the lunar fortnightly tide f= j5 approximately.
In the diurnal tides f=} approximately, k=1,
e=Esin 6 cos 8
e=Esinf@cosfcos(nt+¢+a)....c....... (12).
In the semi-diurnal tides, /=1 approximately, k=2,
e = K sin’d
¢ =Es8in’0 cos (2nt + 2¢p + @)....ecuvennn... (13).

In each of the three preceding equations, the quantity E is a
function of the elements of the orbit of the disturbing body.
We shall therefore assume that,
e=ecos nft+ ke +a)
b =hcos 2nft + k¢ + a)
E==zcos (2nft + k¢ + a)
n=ysin (2nft + k¢ + a)
where e, h, «, y are functions of the co-latitude alone; and we
shall also suppose that « is a function of the co-latitude alone.

Let _ m=n'alg, u=h-e.
Substituting from (14) in (9) and (10) we obtain
zf* + yfsin 0cos()=£~nz—z}
N ¢ F:) 8
. ku
yf*sin 6 + zf cos § = — mj :

B. IL 14
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ha+k'yy+cose00dio(7xsin0)=0............(16).
Solving (16) for # and g, we obtain
dma (f* - cos’0) = gz+l}—ucot0
cosfdu  Fu [T (17).
4vmysin0(f’-cos’0)=——7—gé-s—i;o

Whence substituting the preceding values of z, y and u in (17),
we obtain .

1 d {fy (sin O du/dé + kf " u cos 0)}

gin 0 dO J*—cos'd
by (f* cos 0 du/d@ + ku cosec )
- sin @ (f* — cos'6) o
+dma(u+e)=0.....cccecveuunnnne. (18).

This is equivalent to Laplace’s equation® for determining the
tidal oscillations cf an ocean, whose depth « is a function of the
latitude alone.

Tides of Long Period.

439. Laplace in considering these tides does not employ (18),
but endeavours to show that on account of the friction of the ocean
against its bed, the values of these tides will be the same as the
corresponding values furnished by the equilibrium theory; and he
assumes that the effect of this friction upon any element of the
liquid, can be represented by a force proportional to the velocity of
that element. One objection to this hypothesis is that it is in
complete disagreement with the theory of the motion of a viscous
liquid, which, as we shall see in the next chapter, shows that the
effect of friction is to introduce terms of the form 1 V*u, +V%, . V'w
into the general equations of motion, where » is a constant depend-
ing on the viscosity of the liquid®.

Another objection, which has been urged by Prof. Darwin, is as
follows®. “In systems where resistances are proportional to the

1 Mécanique Céleste, Livre 1v. § 8, (4).
* The problem of Waves in a slightly viscous liquid will be considered in

Chapter XXIII.
3 Proc. Roy. Soc. 1886.
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velocity, it is usual to specify the resistance by a modulus of decay,
viz., that period in which a velocity is reduced by friction to ¢™ or
1+ 2783 of its initial value, and the friction contemplated by
Laplace is such that the modulus of decay is short compared with
the semi-period of oscillation. The quickest of the tides of long
period is the fortnightly tide, hence for the applicability of
Laplace’s conclusion, the modulus of decay must be short compared
with a week. Now it seems practically certain that the friction
of the ocean bed would not materially affect the velocity of a slow
ocean current in a day or two. Hence we cannot accept Laplace’s
hypothesis as to the effect of friction.”

Laplace’s argument is as follows. He supposes that the co-
latitudinal and longitudinal components of the resistance are
represented by the terms 6, #6sin . Now the terms £, 4
depend upon f*, and may be neglected if £ is small; hence (9) and
(10) become

: _ 9nsi =92 5_
6 —2niysin fcos = adH(b ?),
&7 sin 6 + 2nEcos =0,

. d .
ba sin 6 + 0 (vEsin6) =0,

since none of the quantities depend upon ¢. From the first two
we obtain

. d
(e’+ P 0)‘;’———@@—-:).
Substituting in this the value of £ from (14) we obtain

2nf(€ + e 008”0)w=—-~ 5 h—e),’

whence if f is small compared with 6, the left-hand side may be
neglected and we obtain ) —¢=0.

440. We shall now give Prof. Darwin’s solution of this pro-
blem*.

It is assumed that the ocean is of uniform depth; hence
putting B =4maly, p=cosf; and remembering that k=0,
e=E (} - u*), (18) becomes

a (1—p" du
T s o} = B+ E = ) 19),
! Proc. Roy. Soc. 1886. '
14—2
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The symmetry of the motion requires that « should be an even
function of g, hence at the equator where =0, we must have

du/dp=0.
Let us assume

1 du_ s
”'g—_7gdl; =Bu+ By’ + ...B““;L’""-l-
Then
1-p'du
u' = dp
4 (1-stdu
3\ = fdu
Again
d 7} 2n
£L=—Blfn‘"+(Bx—st)/"s+"' (Bn-l_anﬂ)/"' Mt
whence u=C—-3fBp'+3B,~fBu'+......
1
+5, (Bs =S Bo ) B+ i (21),

where C is a constant. Substituting from (20) and (21) in (19),
and equating coefficients we obtain

=Bu+B,-B)p’*+...(By— B ) B+ -

)=B,+3(B,~B)u...
4o (@04 1) (B = By ™+ v (20).

=—4E+B,/B)
Vit _
B,-B,(l—#g)HBE—O .
B BB, _
Bmi_Bsu—l{l_m} T 2n(2n+ 1)—0‘

Hence all the constants C, B,, B,... are expressible in terms of
B,, which is apparently indeterminate.

If we put

-8B = 3BE, or B =-2F,
the last of equations (22) will hold for all values of » from 1 to .
Writing this equation in the form
Bmm =1-— ﬂ B + 8 B!n—s
et 2n(2n+1) 2n(2n+1) B, .’

we see at once that when n is large B, /B, either tends to
become infinitely small or it does not.
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If this ratio does not become infinitely small, it follows that the
successive B's tend to become equal to one another, and so also
do the coefficients B, _, — f*B,,,, in the expression for du/du. We
may therefore put

du M
FPARRAS Sy

where L and M are finite quantities which do not vanish for any
value of u, hence

du _ M
d0 L(l I") (]._—;LT);

Substituting this value of du/d@ in the first of (17), and
putting k=0, it follows that at the pole where u=1, = and
therefore § are infinite. Hence the hypothesis that B, /B,
does not tend to become infinitely small, makes the velocity mﬁmte
at either pole, which is obviously contrary to the facts of the case;
and we therefore conclude that B, /B,, , does tend to become
infinitely small.

Writing the last of (22) in the form

B, _ "2 (2n+1)

™)

B — 78 B vreeeneenneee(28),
n(2n+1) B,

it follows that this ratio may be written in the form of the
continued fraction

_ B [ B
B,, _2n(2n+l) (2n+2) (2n + 3)
B B

T 2m(2n+1) 1 T @n+2)(2n+3)

This continued fraction gives the value which this ratio must
have when the water covers the whole globe.

Let N, denote the value of the continued frwctlon then
remembering that B_ =— 2E, we have

B, =2EN, B,=—-NQB,=-2ENN,
B,=—2ENNN, &c.,
=—}E +2EN,/B.
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We therefore obtain
h=u+ E— )
=C+3E—(E+3/B)u'+L(B,~f'B) p'*+ ...,
or h/E=2N/B—-A+fN)u'+3N (1+fN,)pu
—INN, A+ N)ul 4o (24).

The height § of the tide is equal to hcos(2nft+a) and the
height of the equilibrium tide is ¢ = £ (} — u*) cos (2nft + 2).

In the paper from which this investigation is takeu, Prof.
Darwin has made some numerical calculations for determining the
values of the fortnightly tide when the depth of the ocean is 3000
and 1200 fathoms respectively; and he finds that in the case of ‘
the oceans upon the earth, this tide is smaller than half its |
equilibrium value, but with a deeper ocean the tide would approxi-
mate towards its equilibrium value.

The Dvurnal Tides.

441. In these tides k=1, f=3, e=ZEsinfcosf, also
y=1(1— qcos'd).
In order to solve (18) let us assume
b 2
u=F,+F, (%) +F,(2—lq) + e
ma, ma.

where the F’s are functions of € but not of !; substituting in (18)
and equating coefficients of powers of [, we at once obtain

F,=—e¢=—FEsinfcosé.
To determine F,, put u = F, in the left-hand side of (18), then
v (sin 0 du/df +2u cos ) _  4Ey {sin § (2 cos’f — 1) + 2sin fcos’d}

1 —cos’é 1—4cos’d
=4 Fy sin 6,
also
v (2 cos 6 du/df + ucosec ) _  4Ex {2 cos 6 (2 cos’d — 1) + cos 6}
sin 6 (} — cos®) - sin 6 (1 — 4 cos')
= 4Eycot 6,

whence the first two terms of (18) are equal to
-8Elq sin 6 cos § = — 8lqF,.
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We thus obtain 8lgF, = 8lgF,
therefore F,=F,
Proceeding in the same way it can be shown that
F =F, =.... =F,

whence the value of u finally becomes

U= F,{ :fg (ZL‘Z>'+ ...... }

e
T 1-2g/ma’
2lge/ma .
-I—:EW ......................

The peculiarity of this tide is, that when ¢=0 so that the
depth of the ocean is everywhere uniform, the tide vanishes.

Whence h=e4uy=—

If g is not zero and E is positive, e will be positive if the place
of observation is in north latitude. If therefore the ocean is
shallower at the poles than at the equator, ¢ is positive and there-
fore when the disturbing body is in the meridian of the place of
observation % is negative, and the tide is inverted.

442. The evanescence of this tide applies only to the elevation
of the water; the velocity of the latter which depends on £ and
n does not vanish. Putting u=—e we obtain from (17),

z = E/m, ysin § = — Em™ cos 6.

Confining our attention to a single disturbing body, it appears
from (4) that E=3Ma’sin 8 cos §/ D’ ; hence if the declination of
the disturbing body is north, E is positive, and therefore in north
latitude the motion of the water is from north to south, and the
longitudinal velocity vanishes at the equator.

The Sema-drurnal Tides.

443. We shall only be able to solve the problem of the semi-
diurnal tides when ¢=1 and ¢=0. In the former case y =1Isin’d, °
and the height of the tide can be found by a sumlar method to that
employed in the preceding section.
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We have k=2, f=1, e=Esin’0. Let us therefore endeavour
to find a solution of (18) of the form

w=Ft B, (2)+ R (24

where the F’s are functions of @ but not of I. We obtain as
before
F,=~e=-— Esin*.

To determine F, put u = F, in the left-hand side of (18), then

vy (sin 6 du/df -I; 2ucosf) _ — 4Fl sin*0 cos 6
1 ~cos’d
2'7 (COS 0d“/d0 + 2u cosec 0) =—4El (1 + 008'0)-

sin 6 (1 — cos’6)
Whence the first two terms of (18) are equal to
8Elsin’g = — 8LF,.
We thus obtain F, =F,.
Proceeding in the same way we obtain
F =F_ .=F,,
and the value of  finally becomes

wm fir E (2 4

ma
-t
1-2l/ma’
2le/ma ‘
whence h=e+u=-— 12l (26).

If I/ma < 4, it appears that when the disturbing body is on the
meridian, the tide is inverted.

444. Laplace has also solved the equation determining these
tides, when the ocean is of uniform depth, which leads to a
solution involving a continued fraction similar to that of § 440.

Let ¢=0, 8=4ma/l, v=sin 6, so that e=E»". Changing the
variable from 6 to », (18) becomes

d'u du
2 —_yh — —_ 2 __ L) 6=
r- 7 dy (8—2v"~Bv)Yu+ ER=0...(27).

In order to satisfy this equation, let us assume
u=B,+(B,—E)v+By'+ By’ +...... + B, ™. ..... (28).
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Substituting the preceding series in (27) and equating coeffi-
cients we obtain
B,=0, B,=E,
~2n(2n+3) B,, .+ BB, =0......(29).

By means of this equation the values of the B’s can be deter-
mined in terms of B,, B, Now B,=FE; also since the motion is
symmetrical with respect to the equator it follows from (17) that =
and therefore du/d@ must vanish at the equator; hence B, must be
determined from the condition that du/d@=0 when 6=}
Writing (29) in the form,

B,... 2n+3 B B,
2n+6 2n(2n+6) B,,,,

B
it follows that in order that the series should be convergent, it is
‘necessary that B, /B, should tend to a limit < 1.

Now this quantity tends to become infinitely small or it does
not ; in the latter case

B,"“v"'“ 2n+ 38 '—(1-3) .
B v 2m+6 om) Y’

ultimately when = is very large.

and 2n (2n 4 6) B,

M4

Now this is the degree of ultimate convergence of the series for

(1 — o)}, hence the series for  is convergent and we may therefore
put _
u=A+B(1 -,

where A and B are finite for all values of ».

Differentiating (28) with respect to », the convergence of the
series for du/dv depends upon the value of

2n+4)B,, V(20 +2)B,
Now by (29) .

2n+4)B,.. (2n+4)(2n+3) "
@en+2)B,,, (2n+2)(2n+ 6)

-(-3)»

when n is very large. Now this is the degree of convergence of
the series for (1 —1*)"*; we may therefore put

%"-‘_0+D(1-y') b,
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where C and D are finite for all values of v; also since

du du

_(1—u)*—..0(1- ) + D,

it follows that at the equator where » =1, du/d0=D. Hence the
hypothesis that B, /B, ., does not tend to become infinitely small,
makes df/dt finite at the equator; we therefore conclude that this
ratio does tend to become infinitely small as n mdeﬁmtely increases.

Writing (29) in the form

B _ 18
‘B, ~ 2n*+3n—(2n' + 6n) B,_,./B,.,.’

it follows that B, /B, is expressible in the form of the continued
fraction

§,..ﬂ= B | —@+3n)B [-[n+1+3(n+1)] B[- &e.
B, 2n'+3n 2(n+1)¥+3(n+1) 2(n+2)+3(n+2)
Putting N, for the continued fraction, we obtain
B,=E, B,=EN, B,=ENN, &c.

The solution of the problem of the semi-diurnal tides in an
ocean of uniform depth by means of this continued fraction was
given by Laplace without explanation; it was attacked by Airy’,
and by Ferrel®, but was justified by Sir W. Thomson® and the
process was worked out and explained by Prof. Darwin* as above.®

445. The following numerical results are given by Laplace.
The quantity m is the ra.tio of the centrifugal force to gravity at

the equator, and is equal to o= ; if therefore we put 8 successively

289

1 « Tides and Waves,” Encyc. Met.

3 « Tidal Researches,” U. 8. Coast Survey.

3 Phil. Mag. 18765. ¢ «Tides,” Encye. Brit.

5 The reasoning which lies at the bottom of the investigations of §§ 440 and 444,
may I think be rendered clearer by the following considerations.

Let us suppose that we have to find the value of a function which satisfies
(i) a given differential equation, (ii) certain other conditions. Then if we seek for a
solution in the form of a series, and determine all the coefficients 8o as to satisfy
(i) and (ii), the series will not be the solution we require unless it be convergent.
Similarly if the conditions (i) and (ii) enable us to determine all the coefficients in
terms of a single unknown quantity 4, it does not follow that 4 is indeterminate ;
for if by assigning any particular value to 4, the resulting series could be made
divergent, this value would have to be excluded. The quantity 4 is therefore
not really indeterminate, but must be found from the condition that the eeries
should be convergent.
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equal to 40, 10, and 5, the corresponding depths of the ocean will

1 1 1 ,
be 9890 7235’ 36125oftheearthqradlus Alsosince h = Ev* + u,

Laplace finds the following values of % in the three cases, viz.,

B =40

h=E @'+ 201862 v* + 101164 1»°* — 131047 »* — 154488 »"°
— 74581y" — 2:19750" — 4501 v*® — "0687 »'
—-0082 v* - 0008 »™ —-0001 »*),

B=10

h=E (v + 61960 »* + 32474 »° + 7238 1* + 0919 »*°
+°0076 »** + 0004 »"),

B=5

h=E@'+ '7594- v + 1566 v° + ‘0157 »* + -0009 »").

From these equations we see that k vanishes when » =0, hence
there is no tide at either pole.

At the equator v =1, and we find
B=40, h=—-T4344 K
B=10, h= 112671 E
B=5 h= 19236 E.

When B =40, h is negative which shows that at the equator
the tide is inverted ; but in the neighbourhood of the poles where
v is small, the tides are direct; hence there is a certain latitude,
which is approximately 18° in which the tide vanishes, and which
is therefore a nodal line of evanescent tide. In the other two
cases the tides are always direct ; hence it follows that if the depth
of the ocean is 5o 2890 saan ths of the earth’s radius, or 1200 fathoms, the
tides will vanish in latitude 18°, and in lower latitudes will be
inverted ; as the depth of the ocean increases the latitude of the
evanescent tide increases until it ultimately coincides with the
equator, and for greater depths the tides are direct everywhere.
This critical depth lies between 1200 and 4800 fathoms.
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Free Oscillations of an Ocean of Uniform Depth.

446. Before passing on to consider the canal theory of tides,
we shall consider the problem of the free oscillations of an ocean of
uniform depth which completely envelopes a sphere.

Let a be the radius of the sphere, & the depth of the ocean
when undisturbed. Let the equation of the surface of the sea be

P=a+h+Z Vi (30),

where Y, is a spherical surface harmonic, and the 2n + 1 constants
which it contains are functions of the time. Since [f¥,dS vanishes
when the integration is taken over the surface of a sphere, the
condition of constancy of volume is satisfied by (30).

Since d¢/dr vanishes when 7 = a, the velocity potential ¢ must
be of the form

¢=2{n+1)(r/a)* +n(a/r)*""} Z,............ (31),
where Z, is another spherical surface harmonie.
The condition that (30) should be a bounding surface is

ay, _d

zdt dr

=0,

when r=a + h; whence writing b for a + h, we obtain

day,

7= a’*n(n+1) {(6/a) — (a/b)***} Z,......... (32).
The equation determining the pressure is
%— V+ %? =const..ciuiiniinininniinnns (33),

where V is the attraction potential, and the square of the velocity
is as usual neglected. By § 371, the value of ¥ at the surface is

2n +1°

! Lamb, Motion of Fluids, p. 197. Thomson, Phil. Trans. 1868, p. 608.
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where £ is the mass of the sphere and liquid, and p is the
density of the latter. If o be the density of the sphere

E =4ma’a + §mp (b* — o).
Whence (33) becomes

P_ _4epb
p b+z(’ 2n +1 Y.

+3 ((n+1) (o) +n (afpy™) % Z — const,

At the free surface p = const.; whence putting E/b*=g, we
obtain

— v+ 1) (Bfay +n (afby™} S2x = (g — 4mpb/(2n + 1)} ¥,

=g |1 Sob? Y,
I T @D e@ e =}
Eliminating Z, between (32) and (34) we obtain
a'y, 4=
@ T,
where T, the period of oscillation, is determined by the equation
T} = dag™ {(n + 1) (3fa)" +n (af5)"™)
3pb’

+n (n+1) {(b/a) — (a/b)***} [1 ~ BT Dot s o P a’)}] ..(85).

Y =0,

If o <p the value of T, will be imaginary, and the motion is
unstable. If therefore a spherical nucleus is surrounded by liquid
of uniform depth, the equilibrium will be unstable if the density of
the liquid is greater than that of the nucleus, and the nucleus will
tloat on the liquid with a portion of its surface protruding.

If a = 0, (35) becomes
2 (2n+1)b

n(n—1)g ’
which determines the period of oscillation of a spherical mass of
liquid under the influence of its own attraction.

If h be small compared with a, (35) becomes
T)=4m"/n(n+ 1) {1 —3p/(2n+1) g} gh

a result due to Laplace.

T =
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The Canal Theory of Tides'.

447. The defect of Laplace’s theory when applied to the tides
as they actually exist in the oceans covering the earth, consists in
the circumstance that this theory is based upon the assumption
that the whole earth is covered with water ; whereas the existence
of large continents must seriously affect the accuracy of results
deduced from this theory. Another theory has been developed by
Airy, which is usually known as the canal theory of tides, whose
object is to investigate the tidal motion of water due to the
disturbing influence of the sun and moon, in a narrow canal whose
form is that of a small circle upon the earth.

448. Since the lateral dimensions of the canal are supposed to
be small in comparison with the radius of the earth, the problem
may be treated as one of two-dimensional motion. Let the
origin be taken in the bottom of the canal, and let the axis of z be
measured along the canal, and that of y vertically upwards. Let £
be the displacement in the direction of «, of an element of liquid
whose undisturbed co-ordinates are (z, y); X, ¥ the component
forces parallel to the axes due to the disturbing body; A the depth
of the canal, 9 the height of the tidec.

The equations of motion are

1d

g=X-;d-z ......................... (36),
1d

=Y~ —;dg ..................... (37

Since the vertical acceleration is small compared with the
horizontal acceleration, 47 may be neglected; also since the
disturbing force is small compared with the attraction of the earth,
the pressure at a given depth will be approximately equal to the
hydrostatic pressure due to the height of the free surface; we may
therefore put

p=gp(h+n—y)

Substituting in (36) we obtain
f=X-g.

1 Airy, ‘‘Tides and Waves,” Seec. vi. Encyc. Met.
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By § 403, the equation of continuity is

nfh=~dflde................. Ceeens (38),
whence E=X +gh%§,.........................(39).

In the following applications, X will be of the form
A sin (nt — mz + a), where A and a are constants; substituting
this value of X in (39), and integrating we obtain

A . Y
E= —-,g—k_—msm(nt—mm+a)

= _Akm_ cos (nt — mz + a)
~ m'qh — j

verrieeennn(40).
whence n

This is the portion of § which depends upon the disturbing
body, and therefore constitutes the forced oscillation. The free
oscillations are represented by the complimentary function which
is obtained by integrating (39) with X =0.

449. We shall now suppose the disturbing body to be the
moon, which is assumed to revolve with angular velocity =, in an
orbit whose projection upon the earth is a small circle, and that
the canal is any other small circle upon the earth.

In the figure let P be the pole of the earth, M the projection
of the moon, LL’ the small circle described by it round the pole;
let KK’ be the canal, @ any point on it. Let MQ=¢, pQ=a,
pM =0, Pp=r; also let the angle KpQ=¢, HpQ=0; also let
LPM =nt, PM =4 — 3, so that & is the declination of the moon.
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From the spherical triangle @QpM we obtain

cose=cos fsinasin B+ cosacosfS............ (41).

By § 429, the potential of the forces acting on an element at
Qis

M E
V= p+ A+2D,(3cose 1),
or,
M E M o s

V= D+ +A+2D,{3(cos€sxnasmB+cosacos;?)—1,,
by (41). The force at Q along QK is

1 dv 3Ma

asnadd — " D —(cos(?smasm,8+cosacosﬁ)smOsmB .(42).

We must now express the right-hand side of this equation in
terms of nt. We have

sin @ sin B =sin Bsin (¢ — KpH)
=sin ¢ sin B cos KpH — cos ¢ sin Bsin KpH.
From the spherical triangle MpP we obtain
cos KpH = — cos MpP = (cos y cos 8 — sin 8)/sin B siny,
whence
sin 8 cos KpH = cot y (cos & sin «y cos n¢ + cos «y 8in §) — sin & cosec «y
=cosdcosrycosnt —sin8siney........ennenennn (43),
also sin B sin KpH =gin Bsin MpP =cos §sinnt...... (44),
therefore
sin 8 8in 8 = — sin ¢ sin S sin  + sin ¢ cos & cos y cos nt
—cospcos S8 Nl euveneen.en.. (45).
Again
cos 6 sin 8 = cos ¢ sin 8 cos KpH + sin ¢ sin 8sin KpH
' = co8 ¢ (cos & cos iy cos nt — sin & 8in «y) + sin ¢p cos 8 sin nt,
by (43) and (44); whence
cos @sinasin B + cosa cos B =sin & (cos a cos y — sin a 8in vy cos ¢p)

+ cos & (cos a sin y + sin a cos iy cos ¢) cos nt
+sin ¢psinacosdsinnt............ (46).
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The complete solution of the problem is obtained by expressing
the value of the disturbing force in the form A sin (pt+q¢ +7)
by means of (42), (45) and (46), then putting ¢ = «/a sin a, and
finding the forced oscillation by means of (39) or (40).

450. Let us now suppose that the disturbing body lies on the
equator; then 8=0, and the right-hand sides of (45) and (46)
respectively become

cos ry 8in ¢ cos nt — cos ¢ sin nt............... (47),
and

(cos « sin ¢y + sin 2 cos iy cos ¢p) cos nt + sin 2 sin ¢ sin nt...... (48).

The product of these expressions multiplied by — 3Ma/D® will
give the disturbing force. This product will be found to consist of
three parts, the first of which is independent of ¢ and therefore
does not produce any tide but simply alters the mean level of the
water. The second part depends upon ¢ and 2n¢; and the third
part upon 2¢ and 2nt.

Since ¢ enters in the form 2n¢, the tides represented by both
terms will be semi-diurnal ; and we shall first consider the second
part which is equal to
$Ma D™ (— cos a sin « cos y sin ¢ cos 2n¢ + cos asin «y cos ¢ sin 2nt)
=38MaD™ cos asin §vy cos 3 {sin*}ysin (2nt+ ¢) +cos’}ysin (2nt—¢)}.

In order to find the elevation of the water we must put

¢ = z/a sin a, and substitute the preceding expression for X in
(39) ; we thus obtain from the second of (40)

3Ma*h

— . ) \ B
17 30F (gh — dn'd sin'a) T 1008 A SIRY {cos’}y cos (2nt — )
— sin®}y cos (2nt + ¢)},

which represents two waves travelling in opposite directions.

If in this expression we put tan 4 = tan ¢ sec ry, it becomes

= SMa’h 1 3 2 3 LY |
17 3D° (gh - 4n'a" sin'a) sin a cos a sin iy (cos™y cos’p + sin’e)
X €08 (2nf — Yr)eeenrnrnnen. (49).

The preceding value of 5 shows (i) that the oscillation at the
place of observation goes through all its phases twice during a
complete revolution of the moon, it therefore represents a semu-
diurnal tide; (ii) that at any particular instant, # goes through all

B. 1L 15
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its values as ¢ changes from O to 2m; hence the elevation is
different at every point of the canal, and therefore (49) represents
a single wave travelling round the canal with an irregular motion
twice in a tidal day. Since ¢ =0 when the pole of the canal
coincides with the pole of the earth, this tide does not exist when
the canal coincides with a parallel of latitude.

451. The oscillation just considered, constitutes what Airy calls
the first semi-diurnal tide; we must now consider the third part
of the disturbing force, which depends upon 2¢ and 2n¢, and which
constitutes the second semi-diurnal tide. From (47) and (48) the
portion of the disturbing force which depends on these terms will
be found to be,

§MaD* {sin a cos iy cos 2¢ sin 2nt — § sin a (1 + cos'y) sin 2¢ cos 2nt}
= §MaD*sin a {cos'} y sin (2nf — 2¢) — sin‘}y sin (2nt + 2¢)},
whence the elevation is

2 Ind
n= 4D’?gﬂlfa_}::;? ;n-a) {cos'}y sin (2nt — 2) — sin‘}y sin (2n¢ - 24)}.

Putting tan y = 2 cos y tan 2¢/(1 + cos’y), this may be written,

3Ma'h sin® .
i (gha— n::*l :in’a) {3(1 + cos™y)* cos*2¢ + cos’y sin* 2}

X €08 (20 — x)eeeerrrnnnnnnns (50).

The preceding value of » shows (i) that the oscillation at the
place of observation goes through all its phases twice during a
complete revolution of the moon, hence the tide is semi-diurnal;
(ii) that the height of the tide at a point 7 + ¢ is the same as that
at a point ¢: hence there is a double wave on the canal which
travels round the canal with an irregular motion once in a tidal
day.

452. The waves which we have investigated in §§ 450—1
compound into a single wave at the place of observation; for they
are each represented by terms of the form A cos(2nt—+)) and
B cos (2nt — x) which may evidently be compounded into a single
term of the form C cos (2nt— Q). The quantities C and Q depend
upon the dimensions and position of the canal; hence the magnitude
of the tide and other special circumstances connected with it cannot
be investigated without a knowledge of their values, -
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453. Let us now suppose that the canal is a great circle, whilst
projection of the path of the disturbing body is any small circle.
In this case a=3}m, and the value of sin fsin 8 is given by (45),
and the right-hand side of (46) becomes

— sin oy 8in & cos ¢ + cos «y cos & cos ¢ cos nt + cos & sin ¢ sin n...(51).

If the right-hand sides of (45) and (51) be multiplied together,
and the result multiplied by — 3Ma/D?, we shall find that the
disturbing force consists of three parts. The first part is indepen-
dent of nt, and shows that the mean elevation is modified by the
action of the disturbing body. The second part depends upon 2¢
and n¢, and the third on 2¢ and 2nt.

The tides produced by these terms can be investigated in
precisely the same manner as in §§ 450—1, and it will be found
that the height of the tide produced by the terms depending on
24 and n¢ is

. :
n=-— ﬁ’% sin 28 sin « (cos'y cos’2¢ +sin® 2¢)!

X €O8 (Nt ~Y).vruieninnnnn, (52),

where tan yr = sec y tan 2¢. This tide is therefore a diurnal tide ;
also since the value of # at the point 7 + ¢ is the same as at the
point ¢, there are two waves in the canal, each of which travels
round the canal with an irregular motion once in two days. Since
the elevation depends upon -sin 28, it changes sign when the
luminary crosses the equator, and vanishes when the luminary
is on the equator. If therefore the path of the disturbing body
coincides with the equator, this tide vanishes.

If the canal coincides with a meridian, ¢ = 4, and (52) becomes

SMa'h . . .
"= D lagh— a0 28 sin 2¢ sin nt......... (53),

hence the wave is a stationary wave, whose period is diurnal.
The elevation vanishes at the poles where ¢ =0 or =, and at the
equator where ¢ =47 or §=; also an elevation in north latitude
occurs at the same time as a depression in south latitude, and the
tide will be highest (or lowest) in lat. 45°. The sign of # will

depend on that of 4gh —n'a®, which depends on the depth of the
canal.

If the canal is equatorial ¢=0, and therefore the tide
vanishes.

15—2
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454, The portion of the disturbing force depending on 2¢ and
2nt can be shown as in § 461 to produce an elevation

2 3
" 4%'%% {3(1+cosy)" cos*2¢ + cos*ysin’2¢}

X COB (2N — ) erreriininnens (54),

where tan 5 =2 cos vy tan 2¢/(1 + cos’y). Hence the portion of the
tide which depends on these terms is semi-diurnal, and consists of
two waves on the canal travelling round it with an irregular
motion once a day.

Since the declination of the sun or moon is never equal to 90°,
this tide can never vanish for any position of the disturbing body.

If the canal is equatorial, y =0, and (54) becomes
8Ma'h cos’ §
17 D (gh—r'a)
Hence the tide will be direct or inverted according as h > or
< n'a’(g.
If the canal passes through the pole ¢ =4, whence

3Ma*h cos® 8 .
n= m’&) cos 2¢ cos 2nt ............ (56),

cos (2nt — 2¢) ............ (55).

which represents a stationary wave.

455. If the period of apparent revolution of the disturbing
body round the pole were exactly equal to the period of rotation of
the earth, which is very nearly true in the case of the sun, though less
so in the case of the moon, n’a/g would be equal to 3y; and there-
fore the denominator of (55) would be negative if A < a/289, or < 14
miles about. Now the depths of the oceans which cover the earth
are less than 14 miles, it therefore follows that when the luminary
is on the meridian of the place of observation, or nt = ¢, the tide
considered in (55) will be inverted.

If in (50) the canal coincides with a parallel of latitude, vy =0,
and x =2¢, hence the tide will be inverted unless h > 14 sin‘2
where h is the depth of the canal in miles. At the equator a =4
and at the poles a =0, it therefore follows that whatever the depth
of the ocean may be there must be a certain latitude for which this
tide vanishes, which is equal to cos™ (k/14), and therefore in higher
latitudes the tide will be direct, whilst in lower latitudes the tide
will be inverted,
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The first portion of the disturbing force in the preceding
sections, which does not contain nf, is not absolutely constant, since
it depends upon the motion of the moon about the earth, or of the
earth about the sun, according as the disturbing body is the moon
or the sun. Hence these terms will give rise to tides of long
period ; we shall not however investigate them but refer the reader
to Airy’s treatise’ where they are discussed.

Tides tn Estuartes.

456. We have shown in § 403, that the equation of motion
for long waves is

aE_ D d&’)"
2 = M(l ) e (57),
and that the elevation 7 is
_ ,dE dE\!
n——h—~l (1+—l ) .................. (58),

where k is the depth of the water and +* = gh.

Let us now suppose that a gulf or tidal river communicates with
the sea. Owing to the tides in the sea, there will be a tide in the
river up to a certain point; also if the length of the river be short
in comparison with the radius of the earth, the tides produced by
the direct action of the sun and moon will be small in comparison
with the tides produced by the rise and fall of the ocean with which
the river communicates. The elevation of the water at the mouth of
the river may be represented by a term of the form 5 = H sin nt,
and the problem consists in finding the forced oscillations of the
river due to this term.

Since 7 and therefore df/dx are small, (57) may be written

%:#%(1—3%) .................. (59).

For a first approximation omit the last term on the right-hand
side of (59), and we obtain on integration,

E=acosm (vt —2z), n=-—mahsinm(@t— ),
where m =n/v, H =- mah.

1 «¢ Tides and Waves,” Sec. v1. §§ 446—449,
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The preceding value of 7 gives the height of the tide at any
point up the river to a first approximation. In order to obtain a
second approximation, substitute the preceding value of £ in the
last term on the right-hand side of (59) and we obtain putting
u=vi— 2z,

‘(i;ﬁ—vdm,-i-% 'm® sin 2mu.

In order to solve this equation, assume
&=a cos mu + Az cos 2mu + B sin 2mu
and we find A =— § a®m*; and from (58) we obtain
n/h = }m'a’ ~ ma sin mu + §m’a*z sin 2mu
+ (2mB — ym'a") cos 2mu.. (60)
Since = H sinn¢ when x = 0, we must have

B=- & ma’,
and therefore : 7

n/h = — ma sin mu + § m*a’z sin2mu + gm’a* (1 — cos 2mu)...(61).

457. In the preceding investigation we have implicitly as-
sumed that the terms involving 2mu are small in comparison with
those involving mu. Now the coefficient of cos 2mu is Az, and
this will not be small if # is large; but in order to evade this
difficulty we may take the canal of finite length, and suppose that
the other extremity is connected with a large lake at which an
appropriate forced oscillation is maintained.

The first term of (61) is called the fundamental or oceanic tide;
and the second is called the first over-tide. The velocities of pro-
pagation of the two tides are the same, but the frequency or
speed of the latter is double that of the former. It also appears
that the times of high and low tide are the same throughout the
estuary.

As a matter of fact the time of high tide in a tidal river differs
at different places. For example, if it is high tide at Margate at
noon, high tide at Gravesend occurs at a quarter past two, and at
London Bridge a few minutes before three; hence the preceding
results can scarcely be considered an approximate representation of
the facts. Of course the tides in an estuary depend largely upon
its form, the presence of shoals and other causes; also the effect of
the viscosity of the water, and the friction against the bed of the
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estuary due to the inequalities of the latter, must materially
influence the motion. The solution of the problem when friction
is taken into account has been given by Airy, upon the supposition
that the effect of friction may be represented by a term proportional
to the velocity, and may therefore be obtained by adding the term
pudE/dt to the left-hand side of (57) and proceeding as before ; and
the form of his solution shows that the tide gradually travels up
the river, which is in better agreement with the facts. For further
information on this point, we must refer the reader to Airy’s Tides
and Waves, and to Prof. Darwin’s article on T%des in the Encyclo-
peedia Britannica.



CHAPTER XX.

ON THE GENERAL EQUATIONS OF MOTION OF A VISCOUS
FLUID.

458. WE have defined a perfect fluid to be one which is
incapable of sustaining any tangential stress, and have shown as a
necessary consequence of this definition, that whether such a fluid
is at rest or in motion the pressure at every point is the same in
all directions, and acts in a direction perpendicular to every plane
through that point. We have also pointed out that this condition
is not fulfilled in the case of any fluid which exists in nature, since
every fluid with which we are acquainted is capable of sustaining
tangential stresses, and consequently the pressure at a point is not
perpendicular to every plane drawn through that point, neither is
it the same in all directions. '

It further appears from experiment that whenever a fluid is set
in motion and then left to itself, the motion gradually subsides and
ultimately dies away, and an apparent loss of energy takes place.
This apparent loss of energy is due to the internal friction of the
fluid, which causes the kinetic energy of the motion to be converted
into heat.

Various theories' have been constructed to explain the nature

1 Navier, Mém. de l’Ac’ad. des Sciences, vol. v1. p. 889.

Poisson, Journal de U'Ecole Polytechnique, vol. xim. p. 189.

Barré de Saint-Venant, Comptes Rendus, vol. xvir. p. 1240.

A description of these three papers is given by Stokes, Brit. Assoc. Rep. Hydro-
dynamics, 1846. See also,

Meyer, Ueber die Reibung der Fliissigkeiten, Borch, vol. Lx. p. 229; and vols.
rxxvir. p, 180, and Lxxx. p. 815.

Stefan, Ueber die Bewegung fliissiger Korper, Sitz. dkad. Wiss. Wien, vol. xLv1.

. 8.

P Maxwell, *“On the dynamical theory of gases,” Phil. Trans. 1867, p. 81; and
Phil. Mag. Jan. and July, 1860.

Levy, Comptes Rendus, vol. Lxvi. p, 582,

Kleitz, Ibid. vol. Lxx1v, p, 426,

Batcher, “On Viscous Fluids in Motion,” Proc. Lond. Math. Soc. vol. vaur. p. 108,

A description of these latter papers is given by Hicks, Brit. 4ssoc. Rep. Hydro-
dynamics, 1881—2,
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and effects of fluid friction, some of which depend upon speculations
concerning the molecular constitution of matter; none of them can
be regarded as altogether satisfactory, although they furnish results
which experiment proves to be true when the motion of the fluid
is slow. The theory which will be explained in the present
chapter is due to Prof. Stokes®, and depends partly on the theory
of the internal stresses which are experienced by media which are
capable of resisting compression and distortion, and partly upon
three assumptions,

459. The general theory of the internal stresses experienced
by a medium which is capable of resisting compression and distor-
tion, is given in treatises on Elasticity; but for the sake of
completeness, it will be desirable to give an outline of this theory,
so far'as is necessary for our present purpose. We shall therefore
commence by examining the stresses which act upon an element of
such a medium.

Z
J\Zx
(4
X P >Xy
0 V. A X
8 Y
(]

Let the figure represent a small parallelopiped of the medium.
The stresses which act on the face A.D are,

(i) A normal stress or traction X, parallel to Oz;

(ii) A tangential stress or shear Y, parallel to Oy;

(iii) A tangential stress or shear Z, parallel to Oz.

Similarly the remaining stresses which act on the faces BD and
CDare Y,Z,X,and Z, X, ¥,

These are the stresses exerted on the faces AD, BD, CD of the
element by the surrounding medium; the stresses exerted by the
medium on the three opposite faces will be in the opposite
directions.

1 Trans. Cambd. Phil. Soc. vol. vu. p. 287,
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460. Let F, G, H be the components parallel to the axes, of
the stresses upon the plane ABC, whose area is A and whose
direction cosines are [, m, n. The conditions of equilibrium of the
tetrahedron O.ABC require that

FA=(IX,+ mX, + nX,) A.
We thus obtain ‘
F=IX, +mX, +nX,
G=lY,+mY, +nY ..o (1).
H=1Z,+ mZ, + nZ,

461. The preceding results are true of any medium which is
capable of resisting compression and distortion. We shall now
suppose that the medium is a viscous fluid, and shall proceed to
find the equations of motion.

Let X, Y, Z be the components per unit of mass, of the
impressed forces which act on the fluid; p its density, and ¢ its
resultant velocity. Describe any imaginary fixed surface S in the
fluid, and let e be the angle which the direction of ¢ makes with
the normal to S drawn outwards.

The rate of increase of the component of momentum parallel to
« of the fluid contained within S, is equal to the rate at which
momentum parallel to 2 flows into S across the boundary of S,
together with the rate at which momentum parallel to z is
generated by the component of the impressed force parallel to ,
and by the component parallel to # of the stresses exerted by the
surrounding fluid upon the boundary of S*.

1 The principle upon which this method depends was erroneously- stated
in Vol. 1. § 21. The correct principle for a fristionless fluid is, as stated above,
with pressure substituted for stresses; lines 13 and 14 of page 21 should therefore
be,

The rate at which momentum parallel to = flows into 8, is

~Jfpqu cos edS= — [fpu (lu+mv +nw) dS ;
using this in § 21 fogether with the principle stated above and taking account of
the equation of continuity, we shall obtain the equations of motion of a frictionless
fluid in their ordinary form.

A gimilar modification is required in § 385. In this case the principle is;

The rate of increase of the kinetic energy of the fluid contained within S,
is equal to the rate at which kinetic energy flows into S across its boundary,
together with the rate at which work is done upon the fluid contained within S by
the impressed forces, and by the pressure of the surrounding fluid upon the
boundary of S. Lines 6 and 5 from the bottom of page 81 should therefore be,

The rate at which kinetic energy flows into S,

= —ffpT (lu+mv +nw) dS.
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The rate of increase of the component momentum parallel to «
of the fluid contained within S, is

0] oo

The rate at which momentum parallel to z flows into S, is

— [fpqu cos edS = — [fpu (lu + mv + nw) dS

f f {d (pu?) d(pm)) d(s:'w)} dodyds,

by § 7.

The rate at which momentum parallel to  is generated by the
impressed forces, is

[[fpXdzdydz.

The rate at which momentum parallel to  is generated by the
stresses exerted by the surrounding fluid upon the boundary of S,
is

[ QX +mX, +nX)ds = [ (dx d;; +3% ) dedyds

by § 7. Whence

f[{dt (ou) + d(pu) d(g;v) +d(guw)} dedyds

_ﬁf( = d‘§'+dd‘—Y)dwdydz

whence reducing S to a point, we obtain

d (pu) d(pu") d (puv) d(pww) dX, dX, dX,
dt tde T dy+ dz X+da; dy+dz'

Taking account of the equation of continuity, and of the other
two equations which can be obtained by considering the rates of
increase of the component momenta parallel to y and 2, we obtain
the equations of motion in the form

ou _ dX, , dX, dX,)
Pa=PXt @t gt e

. dY, . dY, dY,
pd—t—pY+ dw"'d—l'i'a; S (2)
o dz, _dz,  dz,

Pa=ri+ i+ y Tz )
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462. In addition to the equations expressing the fact that the
rate of increase of the linear momentum within a closed space is
due to the causes above mentioned, we must also express in an
analytical form the fact that the rate of increase of the moment of
momentum of the fluid within S about any axis, is equal to the rate
at which moment of momentum about this axis is brought in by the
fluid crossing the boundary, together with the rate at which
moment of momentum is generated by the forces which act upon
this portion of the fluid. This will enable us to show that,

The rate of increase of the moment of momentum about @, of
the fluid contained within S, is

17(y 282 - o ) gy,

The rate at which moment of momentum flows into S, is
— [lp (lu + mv + nw) (yw — 2v) dS.

The rate at which moment of momentum is generated by the
impressed forces is

lllp (yZ — 2Y) dwdydz;
and the rate at which it is generated by the surface stresses is
[y (1, +mZ,+nZ) - 2 (1Y, + mY, +nY,)} dS.

Transforming the surface integrals into volume integrals by § 7,
and making use of the equation of continuity, we shall obtain

Wy (o 55 - 2~ S - G~ ) dwdyds
~ 1l (p 5~ ¥~y ~ 5 — 5 dedyds-+ [[(Z,~ Y. dadyds=0.

From (2) it follows that the first two integrals vanish, whence
Z,=7Y, and similarly Z,= X, and Y,=X,.

463. From the preceding investigation it appears that the
components of stress are completely specified by the six quantities
X,Y,Z,Y,Z,X, which we shall in future denote by the letters
P,Q R, S, T, U Equations (1) and (2) may now be written

F=Pl+ Um+Tn
G=Ul+Qm+ S:}
H= T+ 8m+ R
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ou dP dU ar
and P ot =rX+ g, dz dy + iz
av dU  dQ  dS
Pa= Y+da: +dy g [ (5).
ow dT' dS dR
P %= pZ-l- dz +@ + a7

464. It appears from (4) that if we construct the quadric
Paz?+ Qy*+ R2* + 28yz + 2T 22+ 2Uxy =1...... (6),

then F, G, H will be proportional to the direction cosines A, u, v of
the normal to this quadric at the point rl, rm, rn, hence

F=rp, G=pjrp, H=v}rp,
and Pt @t H =) e, ),

where p is the perpendicular from the centre of the quadric on to
the tangent plane at rl, rm, rn.

Hence the magnitude and direction of the stress across any
plane may be found by the following construction.

From the centre of the stress quadric (6), draw a line perpendi-
cular to the plane and meeting the quadric at P, draw the tangent
plane at P; then the required stress will be in the direction of the
perpendicular on to the tangent plane at P, and will be equal to the
reciprocal of the product of this perpendicular and the radius
vector to P.

If the stress quadric be referred to its principal axes, its equa-
tion will be of the form

P +Qy'+ R=1,
where P, ¢, R’ are the normal tractions perpendicular to the
three co-ordinate planes. It thus appears that the tangential
stresses across these planes are zero; hence there are always three

planes mutually at right angles to one another, such that the

stresses across these three planes are altogether perpendicular to
them.

465. If F', &, H' are the stresses perpendicular to any other
three planes mutually at right angles to one another, whose
direction cosines referred to the principal axes of the stress quadric
are (I, m, n), (A, p, v), (L, M, N), we obtain from (4)
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F'=PI' +Qm'+ Rn*
¢ =PN +Qu +BY
H=PI'+{M+RN,

whence F+@F+H=P+Q+R .....ca........ (8).

Hence the sum of the three normal stresses across any three
planes mutually at right angles to each other 18 constant.

466. Equations (5) have been established by perfectly rigorous
dynamical methods, but before any use can be made of them,
it is necessary to connect the six components of stress with the
velocities ; and in order to do this the first assumption has to be
made. '

Let u, v, w be the velocities of the centre of inertia G of any
small element of the fluid; let z, y, z be its co-ordinates and
z+2, y+y, z+72 those of a point P near ¢. The component
velocities of P are

u.____u+m,@+ ydu  , du

dx y@+z£

¥ =v+a =ty @+z T crerenienennene (9).

If we put
dz’/ “ay’ 9= ds°
...(10),

o= (Gri) =4 (E D) =4 (E )

equations (9) may be written

v =v+cx' +fy +ar + ' - £
w=w+br'+ay +gz' + &y —na

where £, 0, {, as usual, denote the components of molecular rota-
tion.

wW=u+texr'+cy +bd +nd -8y
} ceerranen(11),

The first term of each equation represents a motion of transla-
tion of the whole element of fluid.
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The next three terms represent a motion, such that every point
on the surface of the quadric

ex’ + fy' + 92" + 2ayz + 2bzz + 20y =1,

is moving in the direction of the normal at that point. If this
quadric is referred to its principal axes, its equation will be of the
form

€+ fy'+92'=1,
and the corresponding portions of the component velocities will be

wW=éz vV=Fy w=gz.coccio. 12).

Equation (12) shows that every line of the element parallel to
the axes is being elongated (or contracted) at the rates ¢, f, ¢’
respectively. This kind of motion is called a pure strain or
distortion; and the six quantities a, b, c, ¢, f, g, are the six
components of the rate of strain. '

The last two terms of (11) represent a motion of rotation of
the element, whose component angular velocities are £, 0, .

Hence the motion of every small element of fluid consists;
(1) of a motion of translation of the whole element;
(i) a motion of distortion ;

(iii) a motion of rotation about an instantaneous axis.

Now the internal friction of a fluid in motion is caused by the
different elements of the fluid rubbing against one another. In
the case of a perfectly rigid body no such rubbing takes place, and
there is no internal friction ; and since the parts (i) and (iii) of the
motion of the element are such as belong to a rigid body, it is
inferred that these parts of the motion cannot give rise to internal
friction, which is therefore due to the motion of distortion. Hence
the first assumption is that

The six stresses due to viscosity depend solely on the motion
of distortion, and are therefore functions of the six components of
the rate of strain.

If the velocity of the fluid is small, e, f, g, a, b, ¢, will all
be small quantities, and therefore if we expand the stresses in
terms of the rates of strain and neglect squares and higher powers
of small quantities, the stresses will be linear functions of the
rates of strain.
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The second assumption will therefore be that; The six stresses
due to viscosity are linear functions of the rates of strain, the co-
efficients of which are all constant quantities, which depend on the
viscosity of the fluvd. '

Since this assumption depends upon the supposition that the
velocity is small, it is not of an altogether satisfactory character,
when the velocity is not small.

Since the tangential stresses S, T, U are zero when the fluid is
frictionless, they must depend entirely on the viscosity, and there-
fore cannot contain any terms independent of the rates of strain;
but the normal stresses P, @, R do not vanish when the fluid is
frictionless, but are each equal to — p, where p is the pressure.
These stresses are therefore composed of two parts, one of which is
a linear function of the rates of strain, and the other of which is
equal to — p, where p is a function of «, y, z and ¢, which is equal
to the pressure when the fluid is frictionless; and the third as-
sumption is that;

When a gas 1s expanding equally in all directions, the stresses
P, Q, R are the same as if the fluid were frictionless, and are there-
fore each equal to — p.

We shall therefore assume that P, Q@ and R are each of the
form —p+ P, —p+Q, —p+ R, where P, @, R are linear
functions of the rates of strain.

467. Let W be the rate at which work is done per unit of
volume by the strains, then W is the rate at which work must
be done in order to change the rates of strain from a, b &c. to
a + 8a &c.; hence from (10)

SW =P8+ Q8f+R 8 +2 (S5 + Tb+ Usc)...(13).

Since W must be a definite function of the rates of strain, the
right-hand side of (13) must be a perfect differential, hence W
must be a homogeneous quadratic function of the rates of strain;
and therefore in its most general form will contain twenty-one
coefficients. But since the fluid is isotropic, W will remain un-
changed when — z and — w are written for z and w. This altera-
tion changes a and b into —a and —b. Similar observations apply
to the planes (zz) and (yz), whence W must be of the form

W=3%(Eé+ Ff*+ Gg*+ Ao’ + Bb* + C¢*
+2Lfg + 2Mge + 2Nef)......... (14),
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hence Pl:i}elr:Ee-l—Nf-FMg‘
. aw
=°fl—W=Me+Lf+Gy
de TTvTT ¢ 1)}
2S= _— =Aa .
da
dw
oT = 3 =Bb
27=Y _c
de J

Since the fluid is isotropic we at once obtain A =B=C.
Also if the stresses are such as to produce a strain ¢, then @' = R/,
therefore M = N ; similarly N = L, whence L=M=N. Also if
the stresses consist of a single traction P, we must have f=g,
therefore F'= @; similarly G = E, whence £ =F =@G. Changing
the constants and remembering that P =— p + P, we obtain

P=—p+20+2ue
Q=—p+r0 +2uf

" R=—p+A0+ 29
S =2ka, T=2kb, U=2kec

where O=e+f+g.

In order to obtain the relation between & and u, let us consider
the motion of a fluid in two dimensions.

N [))

Let AB be a line meeting the axis of # at an angle }.

0 A X

Let «/, v be the velocities of the fluid perpendicular and
parallel to AB. Then from (5) and (16) A
B. IL 16



242 MOTION' OF A VISCOUS FLUID.
=27H@-F)=3(Q-P),

whence k (3-—;, +g:,) p(f—e)=u (fz; (;:)
But

ZN2=x+y, yYN2=y—a, wN2=u+tv, VN2=v—u,

when du+dv_@_@
ence dy Tdz " dy~ da’

and therefore E=fiiiiiiiiiiiiiinniaend an.

In the case of a liquid 8 =0, and therefore the terms involving
A disappear, and the third assumption is not required: hence all
the components of stress are given by (16) and (17) in terms
of the rates of strain, and therefore of the velocities and a quantity
p# which depends upon the viscosity of the particular liquid under
consideration.

But if the fluid be a gas 6 does not vanish, and we therefore
require a relation between A and p. This is furnished by the third
assumption, which asserts that when e=f=g, P=Q=R=—p;
which requires that,

which gives the relation between A and x in the case of a gas.

We therefore finally obtain

P=‘P—§l‘0+2ﬂg—:
e o d
Q=—P—§#0+2#39
dy ...(19),
=—p- §#0+2ﬂdw -
dw dv du dw dv  du
S= “(dy+a—3)’ T= [L(d +a—w), U=/b(d—$+a—§)J

and the value of W becomes

=— b+ p @+ + g+ 2(a + B + ... (20).

468. We can now obtain the equations of motion of a viscous
fluid in the required form, for substituting the values of P, @, R,
8, T, U from (19) in (5) and putting pu/p =v, the result is
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gu X- 1dp+%y +vV”
t
L ;3§+§ LS N (21).
- ow _ ldp do "
-aT—Z—;B;-i-lV?*-VV ]

When the fluid is incompressible 8 =0, and (21) becomes

ou =X- dp+vV’ ]

ot pdx
ov 1 dp . 929
5= f:dy+ vV SRRREREIE ..( )
ow _ 1 d_p .
5{ =7~ - + IIV ]
and the values of the stresses are obtained from (19) by putting
0=0.

469. The constant u is called the coefficient of wviscosity of the
fluid; it is independent of the pressure and its value is different
for different fluids, and can only be found by experiment.

The quantity »v=pu/p is called the kinematic coefficient of
v18C08ILY.

470. We shall hereafter require the equations of motion of &
viscous liquid referred to cylindrical and polar coordinates.

When cylindrical coordinates are employed, let #’, v be the
velocities of the liquid in the directions of z and y; u, v the
velocities in the directions of = and 6 ; then if ¥ be the potential
of the impressed forces, and if @ =— V — p/p, we have

wWe=ucosf—vsinfh, v"=usinf +vcoséb.

Also if £, denote the acceleration parallel to «,

Je=f.co80+ f,sinf = Z% + v cos OV + v sin GV,

Jo=Ff,co80—f, sinf= —3—3+vcos‘9V" v8in 6V,
16—2
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Now

2, s, : t ) _2 H qiu;
V*u' = cos V*u — sin 6V™ G',smodo
u 2 dv v .
_.;.'coso—;,coso(—z—o-l-;;sma
V’v’=sin0V’u+cos0V‘v+—2—cosG@
o dé
. 2 . .d
—%,sme—;,smed—v—g,ooso.

2,7 3 8,/ /3 _l__g (_ig
Therefore cos 6V'u' + sin 6V =Vu = " 2'dd’
im0 Yo 2 4 208
cos 6V*' —sin 6V*u —-V'v—w,+w,do.
Substituting the values of fg and f, from (7) of § 6, we obtain

ou o' d@ (V % 2d'v) 1

2, — —
o w = e

ot w—J;r-l-v

v w_1dQ w2 duy |
&J,;_;@H(v,,_?J,;@) e (29),
w_dQ. o,
% CaTvv
0 d d v d d
where il Rl i gl R o

In order to obtain the equations referred to polar coordinates
r, 0, ¢, we must recollect that the @ in cylindrical coordinates is

the ¢ in polar coordinates. Let U, V, W be the velocities in the
directions 7, 8, ¢; then

u=Usin@+ Vecosf, w=Ucos@— Vsinh, v="W.
From (23) we obtain

f,=f,cost9+f.8in0=d—g+vcos0V’w+usin0(V’ —-'—",—E ‘ﬂr) .

d s R e
= ; 1dQ . U 2dW
fo—f.,coso—ﬁmn9=;3m+vc030(vu—;’,—ﬁ_’id$)

— vsin 6Vw,

Now
Vu = sin 6V*U + cos GV’V+1,,<2 cos 8 U _ Usin 0) +‘£t—oUcose
r do r

1/, . ,dV cotf . .
—r—,(2sm0w +Vcoso)—-r,— Vsin @
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Y*w =cos V*U —5in 6V*V — %,(2 sin 0%g+ U cos 0) - c(;i;() Usind

- %, (2 cos 0%- Vsin0) - go:’l V cosé.

Therefore

cos6V’w+sin0V’u=V’U————;———cotG

. 24dU0 U 14
cos 6V*u —sin 6V’w=V’V+;, 30 +7—‘,-cot 0—77.

Substituting the values of f,, fs, and f; from (8) of § 6, we
obtain

oU V+ W' _dQ . 2U 24V A
ot "r_——‘d}'”(v U——r"__'r'd_e
2V cotd 2 (_i_W)
_-Ad:l"w-—’l"Sinod¢
ov uv we _1dQ 24U
o —eotd=gg +v (VT +5 G

7 _2&9@_’) L ...(24),
r*sin’d r'sinf d¢
LARUL AL 9.=rsi“ln_e%§+”( Wl
+ws?no%{+i:?;g%f
5t Uit 7 0 o dg

where

471. If the impressed forces have a potential, the equations
determining the rates of change of molecular rotation in the case
of a liquid, are obtained by eliminating the pressure and potential
from (22); and are

ok _

d: d d )
ﬁ—fd—:+n£+§£+w’g

g

on _ . dv dv dy o
5 _Ed_a:+7’dy+ gdz +oV b o (25),

ot dw  dw . dw o
a=tmtrgytta Ve
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472. Tt appears from the preceding results, that the equations
of motion of a viscous fluid are of a somewhat intractable character.
There are however many problems, especially those relating to the
small oscillations of bodies, in which the motion is sufficiently slow
to permit the terms involving the squares and products of the
velocities to be neglected ; in other words we ‘may write d/d¢ for
o/ot. It is also probable that there may be other problems in
which the neglect of these terms may not lead to any serious error.
-Whenever this can safely be done, the equations of motion become
considerably simplified, and when the boundaries of the fluid are

plane or spherical, known methods can be employed for their
solution.

Another point to be noticed is that in deducing these equations,
we have assumed that the stresses due to viscosity are linear
functions of the strains. This assumption is perhaps rather
questionable unless the motions considered are small ; and therefore
the equations themselves cannot be considered to stand on a
perfectly unimpeachable basis. There is however a good deal
of experimental evidence to show, that they may be relied on as
giving a very accurate representation of motions involving small
oscillations; and we shall see in Chapter XXII, that even if the
motion is not slow they give results which represent motion of a
similar kind to that which actually takes place. We are therefore
Jjustified in concluding, that the preceding equations of motion give
a better representation of the motion of fluids which exist in
nature, than those which are derived from the supposition that the
fluid is frictionless.

473. When the terms involving the squares and products of
the velocities are neglected, we can deduce an important result
from equations (25); for in this case they become

d d ' d 2
;if:pvag, o, af=»Vg ............ (26)

which shows that molecular rotation is propagated in a viscous
liquid, according to the same law as heat in a conducting medium.
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Impulsive Motion.

474. We shall now show that the equations of impulsive
motion of a viscous liquid are the same as those of a frictionless
liquid.

If we regard an impulsive force as the limit of a very large
finite force which acts for a very short time 7, and if we integrate
the first of (22) between the limits = and 0, all the integrals will
vanish except those in which the quantity to be integrated becomes
infinite when 7 vanishes; we thus obtain

u—u°+%diwj:pd-r=0.

Putting f fpd'r=P, where P is the impulsive pressure at any
o

point of the liquid, we obtain
pu—u)+dPlde=0.....cccouvuneen. @),

with two similar equations, which are the same as those which
determine the impulsive pressure at any point of a frictionless
liquid.

These equations also show that it is impossible to produce any
tnstantaneous change in the molecular rotation of a viscous liquid
by any impulse applied to the boundary; and also that if u, v, w
and u+u', v+, w+ w' are the velocities just before and just after
the impulse, then w'dz + v'dy +w'dz a perfect differential, and is
therefore derivable from a single function ¢ by differentiation ;
but after a sensible interval has elapsed, this quantity will no
longer be a perfect differential.

Boundary Conditions.

475. We must now consider the conditions to be satisfied at the
boundaries of the fluid. .

At a free surface the normal stress must be constant, and the
tangential stress must be zero; hence there are three equations
of condition, which must be obtained from (4) and (19) by resolving
the stresses upon any element of the free surface along the
normal, and along two lines at right angles to it. The kinematical
condition of § 12 of course always holds.
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If the fluid is in contact with a fixed or moving surface, the
component of the velocity perpendicular to the surface must
always be equal to that of the surface. With regard to the
tangential component, it is found in many cases that an indefinitely
thin film of fluid adheres to the surface and moves with it. When
this is the case the velocity of the fluid in contact with the surface
is the same as that of the surface itself.

The experiments of Helmholtz and Piotrowski appear to
indicate that in the case of many fluids, slipping may take place at
the surface of a solid in contact with the fluid. When the velocity
of the fluid relative to the solid is small, it is assumed that the
tangential force exerted by the solid upon the fluid is in the same
direction as that of the relative velocity and proportional to it;
bence if u, v; ', v" be the component velocities of the fluid
and solid at any point P of the solid along two lines in the tangent
plane at P which are perpendicular to one another, and 7, T" are
the tangential stresses in these directions, the surface conditions
are :

T=Bu-u), T=B@®—2)..c....... (28),
where B is the coefficient of sliding friction.
~ Prof. W. C. Unwin considers that conditions (28) hold good in
the case of water, when the relative velocity is less than one
inch per second. At velocities of § foot per second and greater
velocities, the frictional resistance is more nearly proportional to
the square of the relative velocity.

Many attempts have been made to express the law of friction
of a fluid in contact with a surface, in a form which is applicable to
high as well as low velocities, and various empirical formul® have
been proposed. These are discussed in Prof W. C. Unwin’s
Article on Hydraulics, in the Encyclopmdia Britannica.

The Coefficient of Viscosity.

476. The determination of the numerical value of the coefficient
of viscosity is of considerable importance, and numerous experi-
ments have been made in recent years, especially in Germany, for

" the purpose of ascertaining its value. It is beyond the scope of the
present treatise to.attempt to discuss these experiments, and we
shall therefore confine ourselves to making some general remarks
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upon the subject, and giving the values of this quantity for some
of the more important fluids.

The coefficient of viscosity is found to be independent of the
pressure, but is dependent on the temperature.

The value of x in ¢.G.8. units for the following liquids has been
determined by Helmholtz and Piotrowski'.

Liquid " TemperaLture centigrade
Water ‘014 061 22 24-5°
Alcohol - ‘018 917 25 24-05°
Ether ) ‘002 496 179 5 21-6°
Carbon bisulphide 003 365 026 21-85°

.

According to more recent experiments made by Konig®, the
values of u for the following liquids are

Liquid "
Water ‘014 39
Ether *002 56
Carbon bisulphide 003 88
Oil of Turpentine 018 65

Shrottner found the following values of u for glycerine at
é&C.

p =42 when 6= 3,
p= 8 , 6=20.

A very elaborate series of experiments upon a variety of hydro-
carbons, has been made by Pilram and Handl® which are discussed
in a paper by Graetz*, in which references will be found to most of
the authorities on the subject.

1 Sitzungs. der k. k. Acad. der Wiss. zu Wien, vol. xL. p. 607; see also Wiss.
Abhand. vol. 1. p. 172.

3 Wied. Ann. 1887, p. 198. .

3 Wien. Ber. 1878, p. 113; 1879,p 1; 1881, p. 1.

4 Wied. Ann. 1888, p. 25.



250 MOTION OF A VISCOUS FLUID.

The value of u found by Helmholtz and Piotrowski for water
at 77° Fahr. when expressed in British units of feet, pounds, pounds
per square foot, feet per second is

=000 001 91.

For water the value of u decreases rapidly as the temperature
rises.

The following values in C.G.8. units of the coefficient of sliding
friction B are given by Helmholtz and Piotrowski ; it must however
be confessed that these values are not of universal application, since
this quantity depends not only on the particular liquid, but also on
the nature of the substance with which it is in contact.

Liquid Value of up/B
1
Water -235 34
Alcohol 010 96
Ether ‘012 43
Carbon bisulphide 044 30

Viscosity of Gases.

477. According to the experiments of Maxwell’, the value of
p for air at temperature 6°C. in C.G.S. units is
w =, (1+ 003 660),
where p, is the value of x at 0°C.

The more recent experiments of Obermayer® and Holman®
show that for air, the coefficient of viscosity increases at a less rapid
rate at higher than at lower temperatures. The former has
deduced from his experiments the formula

B = p, (1 +-003 858 59 — 000 001 056°),
and the latter the formula
p=p, (14002 7516 — 000 000 346").
1 Phil. Trans. 1866.

3 Wien. Ber. vol. Lxxi. p. 468 (1876).
® Phil. Mag. (5) 3x1. p. 220.
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The values of u, for air as determined by different experi-
menters is

Maxwell* 000187 8
0. E. Meyer 0001727
Pulyj * 000179 8
Schneebeli ® 000170 7
Obermayer ® 000 170 5
Tomlinson * 000 171 55

The value of u for air obtained by Maxwell when expressed in
British units and degrees Fahr. is,

=000 000 025 6 (461° + 6).

Mazxwell found that damp air over water at a temperature of
21°-11 C,, and a pressure of 101 millims., is less viscous than dry
air at the same temperature by about one-sixtieth per cent.
The researches of Tomlinson lead to the conclusion that at 15°C.
and a pressure of 760 millims., air saturated with aqueous vapour
would be more viscous than dry air to the extent of ‘2 per cent.;
and that it is not until air is under a less pressure than 350
millims,, that the aqueous vapour begins to show any appreciable
effect ; but when the rarefaction is great, moist air is less viscous
than dry air. See also a paper by Crookes, On the Viscosity of
Gases at High Ezhaustions®.

Maxwell found that dry hydrogen is less viscous than air, the
ratio of its viscosity to that of air being *5156. Whence for
hydrogen .

, =000 087 451.

Also a small proportion of air mixed with hydrogen was found
to produce a large increase in its viscosity, and a mixture of equal
parts of hydrogen and air has a viscosity nearly equal to }§ that
of air. -

The viscosity of oxygen is greater than that of air.

The experiments of Obermayer, Wiedermann and Holman

1 Phil. Trans. 1866,

2 Phil. Mag. vol. xx1, 1886, p. 221.

3 Archives des Sciences, Phy. Nat. vol. x1v,
4 Phil. Trans. 1886.

® Ibid. 1881.
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have respectively led to the following formulz for carbonic acid

gas:
p=p, (1 + 003 5856 — 000 001 056°)

p= o (1 + 003 7276 — 000 003 26%)
o= gt (1 4+ 008 7256 — 000 002 646%).

According to Maxwell the ratio of the viscosity of dry air to
carbonic acid gas is about ‘859, whence

=000 161 310 2.

Dissipation of Energy.
478. We shall now obtain an expression for the energy
converted into heat.

If ¢ be the resultant velocity, the rate of increase of kinetic
energy within a closed surface S, is

W 42 llpgdsdyds

= [ f(,,q Y 10 %) dodyds........ (29).

d i d
Now gf-q3- ‘}(d.z“’dy v ) o

Also 9’£=_d;_f;“_)_‘£§f1"_)_d(m®

Substituting in (29) and integrating the last two terms by
parts we obtain

Ot (w3 40 2 40 %) dodyas -3 L

Substituting the values of ou/ot &c. from the equations of
motion in the first term, it becomes

[ (Xu + Yv+Zw) dzdydz
dP au  d dU dQ d
+ﬁf{ (dw dyta) (dw+dy+dz
+w (‘ngZS ‘flz}dwdydz
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and thus on integration by parts we obtain,

A Mo (Xu-+ Yo+ Zu) dadyds —  ffpg’ (b + mo -+ n) dS

+ [flu (P + mU +nT) +v (U +mQ +nS)+w(T+mS+nR)}dS
—JIf{Pe+ Qf + Rg + 28a + 2Tb + 2Uc} dxdydz.

The first term of this expression is equal to the rate at which
kinetic energy is generated by the impressed forces which act on
the fluid within the surface ; the second term is the rate at which
kinetic energy is introduced by the fluid crossing the boundary
and bringing its kinetic energy with it; the third term is equal to
Jf(Fu + Gv+ Hw) dS by (4), and therefore represents the rate of
generation of energy by the stresses acting on the boundary of §;
and we have to consider the last term.

Writing
F=—3u(e+f+9)+2u e+ +g"+ 2a" + 2b* + 2¢")...(30),
the last term is

[llp (e+f+9) dedydz — [[[Fdzdyds.

The first volume integral vanishes for a liquid, and for a gas it
is equal to the rate at which potential energy is converted into
kinetic energy in consequence of the expansion of the gas. The
last integral represents the rate at which energy is converted into
heat. The function F is called by Lord Rayleigh the dissipation
JSunction.

It follows from (30) that when a gas expands equally in all
directions F'=0. Whence the physical interpretation of Stokes’
third assumption is, that for motion of this kind there is no
dissipation of energy.

On Steady Motion.

479. When the motion of a liquid is slow, we may neglect the
terms involving the squares and products of the velocities; and
whenever this can be done the equations of steady motion of a
liquid can be reduced to a very simple form®,

1 Oberbeck, Borch. vol. LxxxI. p. 62,
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Putting Q =— V — p/p, and remembering that in steady motion
du/dt = dv/dt = dw/dt = 0, (22) becomes

1dQ _o (% _dE\
_;.__v*u_z(dz %
1dQ o df _dE\ |
— E _2(_dz d_z) T 3 )}
1dQ _ s, _ o (4 _dn
";"‘v’w_z(@—_l).

Differentiating with respect to z, y, 2, and taking account of
the equation of continuity, we obtain

From (26) we obtain

ViE=0, Vip=0, V¥{=0...coeeerurrnnnns (33),
aé a¢
and by § 17, (26), ds + &y F =0 (34).
Also if we put
_d¢ dN dMH

Tde dy  de
p=30 dL_dN| ..
dy dz dw b coccecessrctersccises

dp dM dN
Y=t s T ‘dy

dz
it can be shown as in § 60, that

Vig=0, V'L +2£=0, V'M+29=0, V'N +2£=0...(36).

480. Let f be any function of «, y, z which satisfies the
equation
Vif=0,

and let £, f,, f,, f, be four new functions of z, y, z which satisfy the
equations

f_f+wdf+ydf+zif @7,

...............
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peefvl

Then it can easily be shown that
VY=V, =V, =V, =0 .cccevrrrennn (39),
A R R (40),

at dy F g =0,

df, df dfo
5 d; ay B vrer e ereeneareaeaes (41).

df, _df, _df

Comparing equations (39), (40) and (41) with (32), (33), (34)
and (31), we see that the same equations are satisfied by £, £, f,
and £, as are satisfied by @/, §,  and {; hence we may put

Qlv=f, 26=f, 2n=1, 28=Ff, ccercurr.... (42).
481. In the next pla,ce we shall show that we may put
M= w(gj g SETTT N (43),
rvig

where F is a function to be determined. For substituting these
values in the first of (85) we obtain

i, d L
u__— dZ(F+wdw+yEg;+z$ wV’F...(44),

with similar expressions for v and w; and if we differentiate the
right hand sides of (44) with respect to «, y, z respectively, it will
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be found that these values of u, v and w, and therefore of L, M, N'
satisfy the equation of continuity.

From equations (36) and (43) we obtain

_et=vL=vL_u ‘g,

dy
whence by (38) and (42)

therefore VVIF=0...cccotnvinrvricnnennnn. (45).

‘We have thus reduced every problem of steady motion to the
determination of two functions ¢ and F which respectively satisfy

the equations
Vig=0, VVF=0...00eeruvreneen.. (46).

482. We shall conclude this chapter with two general pro-
positions,

When the motion is steady and there are no vmpressed forces
and the squares and products of the velocities are meglected, the
sum of the surface integrals of each of the components of stress
parallel to the awes, taken over each of the bounding surfaces s
zero.

From (5) we obtain

dP  dU  dT

Gty ta =0
dP dU d
whence ,Uf(dw dy + 0 dedydz=0,

where the volume integral extends throughout the fluid. Integrat-
ing by parts we obtain

0 =Jf(Pl + Um + Tn) dS = [[FdS

by (4); where the surface integral is to be taken over each of the
bounding surfaces.

483. When the motion of a liquid s steady and the squares
and products of the velocities are neglected, and no shipping takes
place at the surfaces of solids in contact with i, the loss of energy
18 less than it would be if the liquid had any other motion con-
sistent with the boundary conditions’.

1 Helmholtz, Wiss. Abhand, vol. 1. p. 228.
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The loss of energy per unit of volume in the case of a liquid, is
given by the last terms of the dissipation function F, we have
therefore to find the conditions that [[{Fdzdydz may be a minimum,
subject to the condition

du dv dw

¢i_a:+d3}+7;l?=0'

Hence if A is an undetermined function of #, y, z, we must

have
S[[[{F+\ (u,+v, + w,)} dedydz = 0.

Taking the variation, we obtain
2ufff{2u,Ou,+ 2v,80,¥ 2w, 0w, +(v,+w,)(8v,+8w,) + (w,+ ) (Sw,+8u,)
+ (u, +v,) (Suy + &v,)} dedydz + [[f N (Su, + v, + dw,) dedydz = 0.
Integrating each term by parts we obtain
2u [f(20w, + m (v, +u,) + n (w, + u,)} SudS + two similar terms
— O [[[(Vuu+ V'odo + Viwdw) dadyds,

+ [/ (15w + mdo + ndw) dS — [ (g% Su+ % o+ ) dedyds.

In order that the volume integrals may vanish, we must have

2uV'u 4 % =0, 2uVw+ g—; =0, 2uV'w+ Z——:’: 0.

Comparing these equations with (31) we see that
r=2Qp=—2(Vp+p).

Also since there is no slipping, and the boundary conditions
are assumed to be unaltered, du, 8v and dw are each zero at the
boundaries, whence the surface integrals vanish.

B. IL 17
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EXAMPLES.

1. When the motion of a liquid is in two dimensions, and the
squares and products of the velocities are neglected, prove that the
equations of motion are

dQ_dy_ o dQ_ dx_
rartas=% - "%=%

@y ldy 1Py dy
x=r(G5+; G pad) =

and 4 is Earnshaw’s current function.

where

2. When the motion of a liquid is in two dimensions and the
squares and products of the velocity are not neglected, prove that
v satisfies the equation

(vV —-—-IV"\]r ( v%) vy

8. Viscous liquid is confined between fixed walls at which
there is no slipping; prove that the rate at which energy is
diminishing is

4 [[[e*ddyde,

where o is the molecular rotation.

4. If T be the kinetic energy of a viscous liquid which is
contained within a closed surface S, prove that

‘ifi_f = — 4y [ffw*dadydz + 24 [Jqw sin x sin 84S,

where ¢ is the resultant velocity, @ the molecular rotation, y the
angle between the directions of ¢ and the instantaneous axis of
rotation, and @ is the inclination of the normal to the plane
containing the latter axis and the direction of q.

5. Prove that the values of the six component stresses in
polar coordinates are

=“P—§P8+2F%: Q=-p- §/t8+2/b( ap"' )

1 d
R=—p—§p8+2/4(rsmadq;+u+ cote)
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1 dv ldw w 1 du dw'w‘
_P(f'_sin_0d~¢+;¢-i—9_—;00tg)’ T= '“(rsm9d¢+dr ;)’
ldu dv v
U=n(zas+a3)
where
8=du 1 dv 1 d'w+2u+ cot 6.

—J;+rd9+rsm0d¢

6. Prove also that the 'values of the same quantities in
cylindrical coordinates are,

d 1d
P=—p—§u3+2ﬂd—:;, Q=-—p-§ﬂ3+2ﬂ(~—"+

R=—p—§p8+2ﬂ%:
s—,‘(lgz+$) T=#(%+i—:)» U= (le: :ﬂi%)

7. When the motion of a liquid is symmetrical with respect
to the axis of 2, prove that Stokes' current function satisfies the

equation
d d d 2u
("D“«Tt)p"’ (dw+wdz W>D"”
& d 1d
where - D=t g o de

17—2



CHAPTER XXI.

ON THE STEADY MOTION AND SMALL OSCILLATIONS OF
SOLID BODIES IN A VISCOUS LIQUID.

484. THE first problems relating to the motion of solid bodies
in a viscous liquid were solved by Prof. Stokes’, who in 1850
obtained the solution in the case of a sphere which is constrained
to move with uniform velocity in a straight line, after a sufficient
time has elapsed for the motion to have become steady, and also
in the case of spherical and cylindrical pendulums, which are
performing small oscillations in a straight line. The torsional
oscillations of spheres and cylinders form the subject of a joint
memoir by Helmholtz and Piotrowski®, and Oberbeck?® has obtained
the solution in the case of the steady motion of an ellipsoid which
moves parallel to an axis. We shall devote the present Chapter
to the consideration of these investigations.

Motion of a Sphere.

485. Let us suppose that a sphere of radius a is moving along
a straight line which we shall choose for the axis of z, and that the
initial motion of the liquid is symmetrical with respect to this
axis; then it is evident that the subsequent motion will also be
symmetrical with respect to this axis, and therefore the motion of
the liquid can be determined by means of Stokes’ current function.

1 «On the Effect of the Internal Friction of Fluids on the Motion of Pendulums,”
Trans. Camb. Phil. Soc. vol. 1x.

3 Wissenschaft, Abhand. vol. 1. p. 172.

8 Borch. vol. Lxxx1. p. 62.
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Hence if w and » be the component velocities along and perpendi-
cular to the axis of z,

The equations of motion are determined by (23) of § 470; and
if we neglect the terms involving the squares and products of the
velocity, and remember that none of the quantities are functions
of 6, we obtain

du _ dQ . u
'(‘i_t‘ = d——w + 14 ( - ;—,) .................. (2),
dw _dQ .
Tt WV i 3),
and the equation of continuity is
dw  du
PP + = =0.itiiiiniiiininnnn, 4).

Equations (2) and (3) have been formed on the supposition
that the origin is fixed; let us now suppose that the motion is
referred to the centre of the sphere as origin, which is supposed to
be moving along the axis of z with velocity V, and let ¢ be its
distance from a fixed point. If (2, @) be the coordinates of a
point referred to the centre of the sphere as origin,

’w=f(z+§’ @, i),

dw df df
@ -atVay

the second term on the right-hand side is of the same order as the
square of the velocity, and must therefore be omitted ; hence on
the supposition that such terms can be neglected, (2) and (3) hold
good whether the origin is fixed or in motion.

¢ d 1d

Let D=E’+W—;a;_ ...... pesesisensenses (5),

therefore

then if R be any function of z and =

o)~ Lonsd
and 2 oR)=D (ZR) + 55
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whence (2) and (3) may be written
aQ _ (d\p D \”)

dz o dw

.................. 6).
_d_1d(ap_p) ®
Tdw wdz (
Eliminating @, the equation for determining ¥ is
D(D--—)\p Ouereeeeeeereeeeens )
The solution of this equation is
Y=Y+ Py, ),
where ¥, and -, respectively satisfy the equations
/S R ),
d
(D— 1 Jt) N SO (10)

Multiplying (6) by dz, d=, subtracting and taking account of
(9) and (10), we obtain

d
~ag=_2 (;’ do ‘?"L'x ) Je— (11).

Equation (9) shows that the right-hand side of (11) isa perfect
differential.

486. We shall now transform these equations to polar
coordinates r and 6.

Let R and © be the velocities along and perpendicular to the
direction of », then

1 dy o 1 dy
=rsngdo’ 0= remo ar e (12
d sinfd d
and D_dr"+ Tdﬂ( osecede) .............. (13),
whence (11) becomes
1 d (dy 1dy, ,
-dQ_mEt-<—d-;‘ do 7.. dol ) --------- (14).

487. We must now consider the boundary conditions. If we
suppose that there is no slipping at the surface of the sphere, the
boundary conditions are

R=Vcosf, @=~"Vsinf............... @15),
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where V is the velocity of the sphere. By (12) these are equiva-
lent to

?;—g = Va’sin 6 cos 6, EY Vasin®............ (16).

If there is slipping, let U be the tangential stress exerted by
the liquid on the sphere in the direction of @; then it follows from
§ 475 that we must substitute for the second of (16)

B(@®+ Vsinf)=pul.

By means of the transformation formulae of § 18, it can be
shown that

rd0+dr r

whence the condition becomes

U= “(ldR de G)’

1dR d® @
B (®+ Vein 6) = “(a, d0+dr E)

in which 7 is to be put equal to a after differentiation.

If the liquid extends to infinity a.nd is at rest there, R and ®
must each vanish when r=00.

~ Equations (9), (10) and (11) together with (16) or (17) contain
the complete solution of every problem relating to the rectilinear
motion of a sphere in a viscous liquid of unlimited extent, which is
either initially at rest, or whose initial motion is symmetrical with
respect to the line along which the sphere moves. When the
motion is neither of an oscillatory character nor steady, the
difficulty of integrating these equations is considerable, but the
solution as will be shown in the next chapter, can in certain cases
be effected by means of definite integrals.

Motion of a Spherical Pendulum’.

488. In order to apply the preceding results to the motion of
a spherical pendulum, which is performing small oscillations along
a straight line, we shall assume that the time enters into 4
in the form of the factor ¢, where A is at present undetermined ;
then (9) and (10) become —

Dy,'=0, (D=A)Y, =0.ecvnrennen. ...(18),

1 Btokes, Trans. Camb. Phil. Soc. vol. 1x.; see also O. E. Meyer, Borch. vol.
Lxxmr. p. 81, .
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where Y, ¥, are functions of » and @ only. Dropping the
accents for the present, and putting p = cos 6, we can satisfy (18)
by assuming
""1 = Rllan 1!’. = Rg’Qﬂ
where R,, R, are functions of r alone, and
Q=1 -p")dP,[dp,

where P, is a zonal harmonic of degree n. The equations for
determining R, R are

d;—f} —n(m+1) Ryt =0 (19),
d%% —n(n+1) B —NR/ =0............ (20).

The solution of (19) is
R = Ar™+ Br*,

Equation (20) is discussed in Forsyth’s Differential Equations
§ 112 and § 139 Example 4, and it is shown that the solution can
be expressed either in the form
By = () (000D,
» rdr r
or

B =0 [ o=ty dut Dt [ e @l wyrd

489. It will not however be necessary to consider the general
solutions of (19) and (20), since the surface condition (16) shows
that 6 must enter into 4 in the form of the factor sin’d, whence
n=1, and

R=A/r + Br.

To integrate (20) when n =1, put R’ =rdw/dr, and the equation

becomes
' dw 2dw 2 dw dw _
& trdr T N

Integrating we obtain
% (w0r) = A'wr =0,

the solution of which is
w=(Der — Ce=*)[r,
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whence R=r % {(\)™ (Derr — Ce2r)}

= Cer (1 + ) +De (1 -—)
Since the velocity must vanish at infinity, B =D = 0, whence
A 1 .
— AWt ) = - 2
=g {r + 0(1 +M) ¢ r} §0%. ..r..r.(21).
In order to satisfy (16) we must have
=V =ce™,

where ¢ is the displacement of the centre of the sphere, and ¢ is a

constant, whence
=ce™ /Ny = V/\.

Also substituting the values of dyr/dr and dyr/d@ from (21) in

(16), we obtain
8a*c/,- 1
A =4d’c +—; o (l+ﬁ)’
3ac
C==2n
whence

v=4Va' {(1 + :a + h’sa,’) g x% (1 +— ) -;(f-“)} sin*d...(22).

490. We must now calculate the resistance exerted by the
liquid upon the sphere.

Let P be the normal and U the tangential stresses measured
in the  and @ directions ; the formulae of transformation of Chapter
I, give

P=—p+2u (;R 1
d® 1dR ©
U=n(G+r38 7))
Hence if Z be the resistance experienced by the sphere,
Z= 2m-f' (— P cos 0 + U sin 8) sin 0d0........(24).
0

Now by (12) and (16),

e (2 2ty

drdd r df
at the surface; also
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1dR 1 d dv
;30 -d—o(cosecede)

?u] [y

Q|r—t

- ’
a

g— (Va*cos ) =— lrsm 0= <?)
at the surface ; and

e 1 (d*\p 1 d«p)

dr rsin@ \dr* r dr
_ 1 (ldy, sinf d ay\ _ldy
=~ 7sn0 {u = g (voee 05) - dr}
by (10). Hence by (16),
d@ 1 dy,
dr ~  wvasin@ dt’
at the surface; therefore
- ¥, .
Z =2ma f (pa cos 9 —p W) sin Ad4......... (25).
Also f pcosOsinfdf=—1% f sin’@ djg dé;
but Q= - p/p + grsin 6, therefore by (14) at the surface

Z—z = p cosec 0 Z:t’i’; + gpa cos 6,

therefore

f'pcosesmﬁde——}pf ddt+gasm00030) sin 6d6,

a;ccordmgly Z=—mpa 7 /’ { ( ‘It‘) + 2\[»,} sin§d# .......(26).

Now ¥, = L (1+ 3

3
o Utaet -)s““’

Therefore (%) =—37Va (1 + — 3 )"? ,,) sin*é,

3Va 1\,
and Vo=— 50 (1 +5z )sm’e.
Whence Z=4m a‘—wa 1+—9—+ 9 )sm'OdO
L7 YL

‘W(l+ t g ’) tfi::”

where m is the mass of the liquid displaced by the sphere.
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491. Let us now suppose that the sphere is constrained to
perform small oscillations of period . In this case we must have
A =, where 7=2m/n. Putting k=(n/2v)}, we obtain A=k(1+:)
and

9 dvV = 9n

9\dV 9n 1
= W {(1 + 27“) a’t“ + Qk“d (1 + ‘E) V} ......... (27),
since «dV/dt =—nV.

The effect of the first term is simply to produce an apparent
increase in the inertia of the sphere; the second term would pro-
duce a gradual diminution of the arc of oscillation if the sphere
were left free. Now » is a small quantity, whence £ is a large
quantity, hence the effect produced by the second term is small,
and is almost insensible during the period of a single oscillation.
We may therefore employ the preceding value of Z to obtain the
correction due to viscosity in the case of a free pendulum oscillating
in a liquid.

If I be the length of the pendulum, and if K, K’ denote the
values of the coefficients of dV/dt and V in the expression for Z;
the equation of motion of the sphere will be

(Ml+E)§+K'0+(M—m)gd=0,
the solution of which is
0= Ae"‘" sin (pt + ),
K {4(M —m)(Ml+ K) g — K™}
s+K) P~ 2 (Ml +K)

The modulus of decay, that is the time which must elapse
before the amplitude falls to e™ of its original value, is therefore
equal to 2 (Ml + K)/K'.

where &=

Torsional Oscillations of a Sphere'.

492. We shall now investigate the motion of a sphere which
is either filled with liquid or surrounded with liquid, and which is
oscillating by means of a torsion fibre.

1 Helmholtz and Piotrowski, Wissenschaft. Abkand. vol. 1. p. 172,
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Let @ be the angular velocity of the sphere, w the component
velocity of the liquid in the plane perpendicular to the axis of
oscillation, 7' the tangential stress which opposes the motion of
the sphere at a point whose co-latitude is 6. The surface condition
when slipping is supposed to exist is

B(w—awsinf)="T.
By (26) and (30) of § 18,

7=u (G ~3):
whence
B(w—awsin&):p(%g—%) ............ (28).

Since the resistance experienced by the sphere depends solely
on the component velocity w, it will be unnecessary to consider
the other two components. On account of the symmetry of the
motion all the quantities will be functions of (7, 6, t), whence by
(24) of § 470 the equation for w will be

d )
;;: =y (V w — ’l"’—S'iiI]lTé) .................. (29),

the squares and products of the velocities being neglected. Equation
(29) will be satisfied by putting w = W sin 6, where W is a function
of r and ¢ only, which satisfies the equation,

1dW d&'W  2dW 2W
;W=W+;_a7—?_ ............... (30).

Let Q be the angular velocity of the liquid, then W = Qr and
(30) becomes,
aQ d'Q | 4dQ
a= a3 @)
This is the general equation for determining the angular
velocity of a viscous liquid bounded externally or internally by a -
sphere which is rotating about a fixed diameter.

498. In considering the oscillations of a sphere filled with
liquid, we may put
Q= ¢em,
whence (g’? + 4 % =AM (32),

r
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the solution of which is

$=2n

Since Q must not be infinite when =0, we must have A =B,
whence

whence 4 (x - %‘) &+ B (7\ + %)'e""' ......... (33).

Q=4 (:7‘, cosh Ar — 5 sinh M) ............ (34).

Putting & = vp/B, (28) becomes
dﬂ)

Q—m=k<d7

Now o must be of the form ce*™, where ¢ is a constant;
whence substituting the value of Q from (34) we obtain

¢/A=xa* (1 + 3k/a) cosh Aa — a™* (\'k+a™* + 3k/a*) sinh Aa...(36),
which determines 4.

The couple which the liquid exerts on the sphere measured in
the direction of its motion is

G=- 27ra’f: T sin® 0d6 = — §mvpa’ (ﬁ—?)a,

=—8mBa' (R =) cevrviiiiiiiiiiiiii (37),
by (85).

In order to complete the solution we may proceed as in § 491.
First suppose the sphere to perform small oscillations whose period
is 2m/n, then N'v = wn, and

d=mw, N=0/20 (L +0) ceeerennnnn, (38).

By means of (36) and (38) the imaginary quantity ¢ can be
eliminated, and the value of G expressed in a real form as a
function of & and w ; and since the motion is supposed to be slow
we may neglect squares and products of @ and w. Having
obtained the value of G in a real form, the equation of motion
which will be of the form

I6 440 +86=0,
can be written down and integrated.

If the sphere is surrounded with liquid we must put 4 =0 in
(883), because ¢ must not be infinite when r=00. If there is no
slipping 8 = and therefore k=0,
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Steady Motion of a Sphere’.

494. We shall first consider the steady motion of a sphere
which is moving along a straight line, when slipping takes place ;
in order to pass to the case of no slipping, we must put 8 =0 in
our results.

When the motion is steady dyr/d¢ =0, and (7) becomes
DNr=0 .coonninniininninnns veero(39).
Let 4 = ¢ () sin’ 4, then (39) becomes
a2y
(-5 #=0
whence P e et B

Integrating again and changing the constants, we obtain
¢=A/r+Br+Cr'+Drt.................. (40).

Since R and @ vanish at infinity, it follows that C =0, D=0,

and
v = (4/r + Br) sin’ 6.

The first of (16) gives
A + Ba’ =}Va',

and (17) gives
A (1+ 6up/Ba)— Ba*=—Vda’,

whence :

A =—1Va*/(1+3u/8a), B=%Va (1 +2u/Ba)/(1 +3u/Ba).

We thus obtain
¥ =1Va'sin' 0 {3 (1+ %) g—g} (1+ Z—‘:‘J-l... (41).

If there is no slipping B = o, and the preceding equation
becomes

+v=3}Va (3_1' - g) sin® @ ...oooeineninnen. (42),

a
which is Prof. Stokes’ result.

495. The value of the force which must be applied to the
sphere in order to maintain the motion, may be obtained either by
calculating the resultant force exerted by the liquid upon the

1 Stokes, T'rans. Camb. Phil, Soc. vol. 1x.; see also Lamb, Motion of Fluids,
§§ 184—185,
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sphere, or by means of the dissipation function. If we employ
the first method, and put » =Dy, we obtain from (6)

dp (dud —@dw)

dw d

-k (ldu, v

o dp—rsin()(rdﬂdr P d)-
Now Dy =—2Brsin’ 6,

whence dp =2Bud (r cos 6),
and therefore p=II1+2Bur™cos 0 ......coecrurrrvunin (43),
and we obtain from (23),

=-p+2 -, |

= —1II - pcos § (124 /a* + 6B/a")
also U=—-6A4Aur*sin 6,

and therefore from (24)
Z= 21r,u.f {(12:‘1 + GB) cos’ 0 sin 0 — S;—-455111' }dO

=8muB,
=6Vmpa (1 + 2u/Ba)/(1+3u/Ba) «coccvverninnnannnnn. (44).

If in (44) we put B respectively equal to infinity and zero, we
see that Z must lie between the values 6 Vrrua and 4Vrua.

If a solid of density o is descending in a viscous liquid of
density p under the action of gravity, the force in the direction of
its motion is 4wa’g (¢ — p). If therefore the sphere descend from
rest, the velocity will not continue to increase indefinitely, but will
tend towards a limiting value which is determined by the equation

gma’y (o — p) = 6Vmua (1 + 2/Ba) /(1 + 3/8a).
If there is no slipping the value of V is

The preceding formula has been applied by Prof. Stokes to
show that the viscosity of the air is sufficient to account for the
suspension of the clouds.

496. We shall now determine the steady motion of liquid
which surrounds a sphere, which is constrained to rotate with
uniform angular velocity about a fixed diameter,
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By (80) the equation for W is

dWwW 2dW 2W.
ELRE

the solution of which is
W=Ar+ B/r'.

Since W must not be infinite when » =00, 4 =0, whence
w=DBr?sin 6.

The surface condition (28) gives

B = wd’ (1 + ZL;)_I .
‘Whence

wa®

w="%sin 6 (1+ Z—’;) .................. (46).

If 8= this becomes

which is Prof. Stokes’ result.
The couple which must be applied to the sphere in order to
maintain the motion is
d (w\ (" .
— s & (W 3
G =—-2mpa dr( )fo sin® 0d6,

r
= 8muwa® (1 + 3u/Ba)™

In obtaining the preceding result we have tacitly assumed that
the stream lines are concentric circles, whose centres lie on the
axis of rotation. Prof Stokes has however pointed out,—*that
permanent motion in annuli is impossible, whatever may be the
law of friction between the sphere of the liquid, and it is therefore
necessary to suppose that the particles move in planes passing
through the axis of rotation, while at the same time they move
around it. Infactitis easy to see that from the excess of centrifugal
force in the neighbourhood of the equator of the revolving sphere,
the particles in that part will recede from the sphere, and approach
it again at the poles, and this circulating motion will be combined
with a motion about the axis. If however we leave the centri-

fugal force out of consideration, the motion in annuli becomes
19

possible’.
! Math, and Phys. Papers, vol. 1. p. 103,
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Steady Motion of an Ellipsotid.

497. By means of equation (42) it can easily be shown that if
the axis of # be the direction of motion of the sphere, the
component velocities u, v, w parallel to the axes of #, y, z are
determined by the equations

u=iV(:3—:‘+‘:;)+%V(1_“?')@,
v= 7 (1-2)%,
w= gV(1-‘§)‘%Z.

The preceding formulz suggested to Oberbeck® the correspond-
ing results in the case of an ellipsoid, which moves parallel to one
of its principal axes.

Let Q be the potential of an ellipsoid of unit density, so that
with the notation of § 147,

Q=3 (42 + By'+C\2")— Hy

and let
u=a(m%—ﬂ,\+3d’ﬂ)
v=u ( dHA""dedy) e (48),
'w=a( dHA_FBdwdz) J

where a, B are constants. It can easily be shown that these values
of u, v, w satisfy the equation of continuity, and vanish at infinity.

If the ellipsoid move parallel to # with velocity V, and there
is no slipping, the surface conditions are

u=V, v=0, w=0.

If p be the perpendicular from the centre on to the tangent
plane at (2, y, 2), and the unsuffixed letters denote the surface
values of 4, B, C, H,

dH _ 2mxp'z  d'Q dmp’a’

d_w-'—a"’dw’Aa"

1 Borch. vol. LxxxI, p. 62,
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whence V=a {AB 2‘"? o (l + 23)}
and therefore
g a=— 2V .
B =-—4d’, A== o (49);

also the preceding values of « and 8 make v and w each zero at

the surface.

If X be the force required to maintain the motion,
X =[f(Pl + Um + T'n) dS.

Now let us suppose that the liquid is bounded by a very large
sphere whose radius r is ultimately made infinite ; then by § 482

X=-[f[(PV+Um'+ T7')dS,
where the accents refer to the spherical boundary.

At a great distance from the origin H) = E/r, where £ is the
charge due to a distribution of electricity upon the ellipsoid of
density 4p; also the coefficients of B in (48) are of the order »™
and therefore ultimately vanish. We thus obtain

1 4 _ Eaay
=— Ea( r’) s V== e
whence p=—2uEazx/r,

and therefore

w__anz
===

~P=—pt 3 B 6 Bapapr,

= U= 6Eapa’y/r*,
— P'= 6Bapa's),
therefore PU+ Um' + T'n' = 6 Eaua®/r*,
Hence  X=—12nFau / " cos* @sin 840,
[
= —4dwEapu,
8TuEV

“dd'+2H'
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Motion of a Cylinder'.

498. We must in the next place consider the small oscillations
and steady motion of a circular cylinder ; and we shall commence
with the case of a cylindrical pendulum, which is performing small
oscillations along a straight line.

Let u, v be the velocities of the liquid parallel to fixed
rectangular axes; the equations of motion are

du _dQ

Gt

T (50),
dv_d .
dt~ dy +V

where Q =—p/p— V'; the squares and products of the velocities
being neglected.

Also if 4 be the current function
u=dy/dy, v=—dy/dz;

whence eliminating ¢ we obtain

v (V’—-—)«p Oueeeeeeeereeans (51).
This equation will be satisfied by putting
v=v+vy
where v | (52),
2 _
( : dt) Y S (53)

Substituting for %, v in terms of 4 in (50) we obtain,

_ d/(, 1d Lo d
—dQ=vie g (v~ ) ¥ =y 7, (v )
which becomes by (52) and (53),

—dQ= (idy dy";;dx) ................. (54).

Let R, ® be the velocities of the liquid along and perpendicular

1 Stokes, Trans. Camb. Phil. Soc, vol. 1x.
18—2
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to the radius vector, a the radius of the cylinder; then changing
to polar coordinates we have

=1 o__d

rdé’ dr’
d 1d 1d
2 e — — — —
Vi=Ztrntra
whence (54) becomes }
_dg=2 ("’"’r rdf — d(}’;} L — (55).
If V be the velocity of the cylinder, the surface conditions are
d .
d‘g Va cos 6, El% =Vsiné............... (56),

when r=a. Equations (56) show that # must enter into 4 in the

form of the factor sin @ ; also if we assume that the time factor is

€™, we may put

Y, =" sin by, (1), Y,=€"sin Oy, (r), V=0c"...(56 ).
Substituting in (52), (53) and (56) we obtain )

X FXIT =X =0, (57),
Xs +x T =X/ =A% =0 e (58),
X (@ +x, (@ =ac, x (@)+x, (@)=c......... (59).
The integral of (57) is ’
Xa=A[r+Br.....ccooovneiiinn. (60),

whence since y, = 0 when r =, B=0.

499 Since y, must vanish when =, the proper solution of
(58) is x,= K, (Ar) where K| is a Bessel’s function of the second
kind of order unity; but since A is a complex quantity, the
definite integral form of K, is not a convenient expression, and we
shall therefore proceed to find one suited to our purpose.

Let y, = du/dr ; substituting in (58) and integrating we obtain |

du  1du
d’l"’ + - d )\.’u =0 ittt (61) i
If the equation
' 1du s, 7Y,
«F‘J’;«Tr"(’” +?)u=0 ............... (62),
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be integrated by series, the result is

u’=Ar"{1+ L A + }
2.(2+2%n) T 2.4.2+2n).GT2m) T
B( . _» At
+ o {*2(2 o)t 24.2—2n).a=2m) T }

The latter series fails when n is an integer since it becomes
infinite ; and when = is zero the two series become identical. Let
us therefore denote the first series by f(n) and the second by
Jf(—mn), then by Maclaurin’s theorem

u = Af (n) + Bf (=)
=(4+B)f(0) +(A-B)nf' O +A+B) 5, f (O) + oo

whence choosing new arbitrary constants, the value of u' when

n =0 will be
w'=u=Cf(0)+Df (0).
Now
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